Đề thi định kỳ Toán 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1

Đề thi định kỳ Toán 11 năm 2018 - 2019 trường THPT chuyên Bắc Ninh lần 1 gồm 2 đề dành cho 2 ban: Chuyên Sinh, Văn, Anh, Cận 2 và Chuyên Lý, Hóa, Tin, Cận 1, mỗi đề được biên soạn theo hình thức tự luận với 6 - 7 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề)
(345) 1149 08/08/2022

Đề thi định kỳ Toán 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1 gồm 2 đề dành cho 2 ban: Chuyên Sinh, Văn, Anh, Cận 2 và Chuyên Lý, Hóa, Tin, Cận 1, mỗi đề được biên soạn theo hình thức tự luận với 6 – 7 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề). Đề nhằm kiểm tra lại các kiến thức Toán 10 và các kiến thức Toán 11 đã học như: Hàm số và phương trình lượng giác, Biện luận nghiệm phương trình bậc hai và định lý Vi-ét, Vectơ và ứng dụng, Giải phương trình vô tỉ, Tọa độ phẳng Oxy, Bài toán min – max. Đề thi định kỳ Toán 10 có lời giải chi tiết.

Trích dẫn đề thi định kỳ Toán 11 năm 2018 – 2019 trường THPT chuyên Bắc Ninh lần 1:
+ Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác nhọn ABC có trực tâm H. Đường trung tuyến AM và đường thẳng BC có phương trình lần lượt là: 3x + 5y – 8 = 0 và x – y – 4 = 0. Đường thẳng AH cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; -2). Tìm tọa độ điểm B, biết B có hoành độ không lớn hơn 3.
[ads]
+ Cho phương trình: x^2 – 4x + m + 1 = 0. Tìm giá trị của m để phương trình có hai nghiệm phân biệt dương thỏa mãn: √(x1) + √(x2) = 6.
+ Trong mặt phẳng tọa độ Oxy, cho hình thoi ABCD có các đỉnh B, D thuộc trục hoành, các đỉnh A, C lần lượt nằm trên hai đường thẳng d1: x – y + 1 = 0 và 3x + 2y – 5 = 0.
a) Chứng minh hai điểm A và C đối xứng nhau qua trục hoành? Xác định tọa độ các đỉnh A và C.
b) Biết diện tích hình thoi ABCD bằng 20. Xác định tọa độ các đỉnh B và D.


(345) 1149 08/08/2022