Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GD&ĐT Hà Nội
Nhằm giúp học sinh khối 12 ôn tập để hướng đến kỳ thi tốt nghiệp THPT 2020 môn Toán, tối thứ Bảy ngày 19 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tiếp tục tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai năm học 2019 – 2020; kỳ thi được diễn ra theo hình thức thi trực tuyến (online), học sinh sẽ biết được đáp án và điểm số sau khi hoàn thành bài thi.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GD&ĐT Hà Nội được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT; đáp án và lời giải chi tiết của đề thi sẽ được HocOn247 cập nhật trong thời gian sớm nhất có thể.
Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GD&ĐT Hà Nội:
+ Cho 3 mặt cầu có tâm lần lượt là O1, O2, O3 đôi một tiếp xúc ngoài với nhau và cùng tiếp xúc với mặt phẳng (P) lần lượt tại A1, A2, A3. Biết rằng A1A2 = 6, A1A3 = 8, A2A3 = 10. Thể tích khối đa diện lồi có các đỉnh 1O1, O2, O3, A1, A2, A3 bằng?
+ Cho hàm số y = f(x), chọn khẳng định đúng?
A. Nếu f'(x) đổi dấu khi x qua điểm x0 và f(x) liên tục tại x0 thì hàm số y = f(x) đạt cực trị tại điểm x0.
B. Hàm số y = f(x) đạt cực trị tại x0 khi và chỉ khi f'(x0) = 0.
C. Nếu hàm số y = f(x) có điểm cực đại và điểm cực tiểu thì giá trị cực đại lớn hơn giá trị cực tiểu.
D. Nếu f”(x0) và f'(x0) = 0 thì x0 không phải là cực trị của hàm số.
[ads]
+ Cho hàm số y = f(x) = ax^4 + bx^3 + cx^2 + dx + e (a khác 0). Hàm số y = f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên thuộc khoảng [-6;6] của tham số m để hàm số g(x) = f(3 – 2x + m) + x^2 – (m + 3)x + 2m^2 nghịch biến trên khoảng (0;1). Khi đó tổng giá trị các phần tử của S bằng?