Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường PTNK – TP HCM

ToanVN.com giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 - 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 05 câu tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022.
(320) 1068 06/06/2022

ToanVN giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 05 câu tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022.

Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường PTNK – TP HCM:
+ Cho các phương trình x2 – 2ax + 3a = 0 (1) và x2 – 4x + a = 0 (2), trong đó a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68.
+ Cho phương trình 2^x + 5^y = k (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm.
+ Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB.

(320) 1068 06/06/2022