Đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Cần Thơ
ToanVN giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Cần Thơ; đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 4,0 điểm, phần tự luận gồm 04 câu, chiếm 6,0 điểm, thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021.
Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Cần Thơ:
+ Tìm tất cả các giá trị của tham số m sao cho phương trình 2 x mx m 1 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 1 2 1 2 1 1 x x x x.
+ Trong năm học 2020 – 2021, trường Trung học cơ sở A tổ chức cho học sinh đăng ký tham gia câu lạc bộ Toán học và câu lạc bộ Sáng tạo khoa học. Ở học kỳ 1, số lượng học sinh tham gia câu lạc bộ Toán học ít hơn số lượng học sinh tham gia câu lạc bộ Sáng tạo khoa học là 50 học sinh. Sang học kỳ 2, có 5 học sinh chuyển từ câu lạc bộ Sáng tạo khoa học sang câu lạc bộ Toán học nên số lượng học sinh của câu lạc bộ Toán học bằng 3 4 số lượng học sinh của câu lạc bộ Sáng tạo khoa học. Biết rằng trong năm học, tồng số học sinh tham gia cả hai câu lạc bộ không thay đổi và mỗi học sinh chỉ tham gia một câu lạc bộ. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu?
+ Cho tam giác ABC (AB < AC) có ba góc nhọn và nội tiếp đường tròn (O). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại điểm H.
a) Chứng minh các tứ giác BCEF, EHDC nội tiếp.
b) Gọi K là giao điểm của hai đường thẳng EF và BC. Đường thẳng AK cắt đường tròn (O) tại điểm thứ hai là I. Chứng minh tam giác KBF đồng dạng với tam giác KEC và KI.KA = KF.KE.
c) Qua điểm B vẽ đường thẳng song song với đường thẳng AC cắt các đường thẳng AK và AH lần lượt tại điểm M và điểm N. Chứng minh HM = HN.