Chuyên đề khoảng cách giữa hai đường thẳng chéo nhau – Trần Mạnh Tường

Tài liệu gồm 12 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách giữa hai đường thẳng chéo nhau trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán.
(331) 1104 18/09/2022

Tài liệu gồm 12 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách giữa hai đường thẳng chéo nhau trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán.

I. KIẾN THỨC CẦN NHỚ
1. Định nghĩa
Khoảng cách 2 đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó.
2. Các phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau
Có 3 phương pháp thường dùng:
a. Phương pháp 1
Dùng định nghĩa:
+ Xác định đoạn vuông góc chung AB của hai đường thẳng chéo nhau.
+ Tính độ dài đoạn AB.
[ads]
b. Phương pháp 2
+ Chọn hoặc dựng 1 mặt phẳng (P) chứa 1 đường và song song với đường thẳng còn lại (chẳng hạn chứa b và song song với a).
+ Khi đó d(a;b) = d(a;(P)) = d(M;(P)) với M là điểm tùy ý trên đường thẳng a.
c. Phương pháp 3
+ Chọn hoặc dựng 2 mặt phẳng lần lượt chứa 1 đường thẳng và song song với đường thẳng còn lại.
+ Khi đó d(a;b) = d((P);(Q)) = d(H;(P)) = d(K;(Q)) với H thuộc (Q) và K thuộc (P).
d. Sử dụng phương pháp vectơ
II. BÀI TẬP VẬN DỤNG
Chọn lọc 10 câu hỏi và bài toán trắc nghiệm tính khoảng cách giữa hai đường thẳng chéo nhau, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.


(331) 1104 18/09/2022