Đề thi chọn đội tuyển học sinh giỏi Toán 12 năm 2018 – 2019 sở GD và ĐT Bến Tre
Nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán để bồi dưỡng tham dự kỳ thi HSG Quốc gia năm học 2018 – 2019, sở Giáo dục và Đào tạo Bến Tre tiến hành tổ chức kỳ thi học sinh giỏi cấp tỉnh, đề được soạn theo hình thức tự luận với 4 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang chấm điểm.
Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán 12 năm 2018 – 2019 sở GD và ĐT Bến Tre:
+ Dịp hè năm học 2017 – 2018, hiệu trưởng trường A tổ chức cho 3n (n là số nguyên dương) học sinh tham gia cắm trại. Mỗi ngày, hiệu trưởng phân công 3 học sinh làm vệ sinh khu vực cắm trại. Khi đợt cắm trại kết thúc, hiệu trưởng nhận thấy rằng: với 2 học sinh bất kỳ có đúng một lần được phân công làm vệ sinh trong cùng một ngày. Khi n= 3, hãy tìm số cách sắp xếp học sinh thỏa yêu cầu trên. Chứng minh rằng n là số lẻ.
+ Cho tam giác ABC có góc A bằng 60 độ, AB > AC. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, H là giao điểm hai đường cao BE và CF (E ∈ AC, F ∈ AB). Trên các cạnh BH, HF lần lượt lấy các điểm M, N sao cho BM = CN. Tính giá trị của (MH + NH)/OH.