Đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa

Đề thi giữa kỳ 2 Toán 12 năm 2020 - 2021 trường THPT Sầm Sơn - Thanh Hóa được biên soạn theo hình thức đề trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết VD - VDC.
(391) 1302 08/08/2022

Vừa qua, trường THPT Sầm Sơn, thành phố Sầm Sơn, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra chất lượng giữa kỳ 2 môn Toán 12 năm học 2020 – 2021.

Đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa được biên soạn theo hình thức đề trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết VD – VDC.

Trích dẫn đề thi giữa kỳ 2 Toán 12 năm 2020 – 2021 trường THPT Sầm Sơn – Thanh Hóa:
+ Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT Sầm Sơn, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD, phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?
+ Cho hình trụ có chiều cao bằng 6 cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A’B’ mà AB = A’B’ = 6cm, diện tích tứ giác ABB’A’ bằng 60cm2. Tính bán kính đáy của hình trụ.
+ Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y + 2)2 + (z – 3)2 = 12 và mặt phẳng (P): 2x + 2y – z – 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q) là?

File WORD (dành cho quý thầy, cô): TẢI XUỐNG


(391) 1302 08/08/2022