Cho hình phẳng giới hạn bởi các đường \(y = \tan x,\,y = 0,\,\,x = 0,{\rm{ }}x = \dfrac{\pi }{4}\) quay xung quanh trục Ox. Thể tích của khối tròn xoay tạo thành bằng:
lượt xem
Biết tập nghiệm của bất phương trình \(\sqrt {{x^2} - 3x - 10} < x - 2\) có dạng \(\left[ {a;b} \right)\). Tính \(A = a + b\).
lượt xem
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = x{\left( {x + 1} \right)^2}{\left( {x - 2} \right)^4}\) với mọi \(x \in \mathbb{R}\). Số điểm cực trị của hàm số \(f\) là:
lượt xem
Phương trình \(\sin x = \cos x\) có số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) là:
lượt xem
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\) . Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
lượt xem
Cho số phức z thỏa mãn phương trình \((3 + 2i)z + {(2 - i)^2} = 4 + i\) . Tìm tọa độ điểm M biểu diễn số phức z.
lượt xem
Trong không gian với hệ tọa độ Oxyz, hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu?
lượt xem
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
lượt xem
lượt xem
lượt xem
Cho khối chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình thoi và \(SABC\) là tứ diện đều cạnh \(a\). Thể tích \(V\) của khối chóp \(S.ABCD\) là
lượt xem
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau.
Hàm số \(y = - 2f\left( x \right) + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
Khẳng định nào dưới đây đúng?
lượt xem
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi có hai đường chéo \(AC = a\), \(BD = a\sqrt 3 \) và cạnh bên \(AA' = a\sqrt 2 \). Thể tích \(V\) của khối hộp đã cho là
lượt xem
Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là
lượt xem
Hàm số \(y = \dfrac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
lượt xem
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
lượt xem
Cho hàm số \(y = \dfrac{{2x + 1}}{{x + 2}}\). Khẳng định nào dưới đây đúng?
lượt xem
Tính đạo hàm của hàm số \(y = {x^3} + 2x + 1\).
lượt xem
Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là
lượt xem
Cho \({x_0}\) là nghiệm của phương trình \(\sin x\cos x + 2\left( {\sin x + \cos x} \right) = 2\) thì giá trị của \(P = 3 + \sin 2{x_0}\) là
lượt xem
lượt xem
Tìm các giá trị thực của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\) đạt cực đại tại \(x = 3\).
lượt xem
Trong không gian \(Oxyz\), cho mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Xác định tọa độ tâm của mặt cầu \(\left( S \right)\).
lượt xem
Tìm điều kiện để hàm số \(y = {\rm{a}}{{\rm{x}}^4} + bx + c(a \ne 0)\) có 3 điểm cực trị.
lượt xem
Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 3”. Tính xác suất \(P\left( A \right)\) của biến cố A.
lượt xem
lượt xem
Hàm số \(y = {\left( {4{x^2} - 1} \right)^4}\) có tập xác định là
lượt xem
Cho hàm số \(y = f(x)\)có bảng biến thiên sau:
Tìm giá trị cực đại \({y_{{\rm{C\S}}}}\) và giá trị cực tiểu \({y_{{\rm{CT}}}}\) của hàm số đã cho
lượt xem
Tính \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x - 3}}{{\sqrt {{x^2} + 1} - x}}\)?
lượt xem
lượt xem
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
lượt xem
lượt xem
Đường cong hình bên là đồ thị của hàm số \(y = \dfrac{{{\rm{ax}} + b}}{{cx + d}}\), với a, b, c, d là các số thực. Mệnh đề nào dưới đây đúng?
lượt xem
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\). Biết \(f\left( 0 \right) = 2\). Tính \({f^2}\left( 2 \right)\)
lượt xem
Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\) ;\(y = x\). Tính \(S\) ?
lượt xem
Tính đạo hàm của hàm số: \(y = {\log _2}(2x + 1)\).
lượt xem
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x - 2} + \sqrt {4 - x} \) lần lượt là M và m. Chọn câu trả lời đúng.
lượt xem
Trong không gian Oxyz, cho điểm \(M(1; - 2;3)\). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I bán kính IM ?
lượt xem
Cho hàm số \(y = \dfrac{{m{x^3}}}{3} - {x^2} + 2x + 1 - m.\) Tập hợp các giá trị của m để hàm số nghịch biến trên \(\mathbb{R}\) là
lượt xem
Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\) và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích của khối chóp S.ABCD?
lượt xem
Cho hình trụ có bán kính \(R\) và chiều cao\(\sqrt 3 R\). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.
lượt xem
Tìm tập nghiệm S của phương trình: \({\log _3}(2x + 1) - {\log _3}(x - 1) = 1\).
lượt xem
Tìm tổng các nghiệm của phương trình sau \(3\sqrt {5 - x} + 3\sqrt {5x - 4} = 2x + 7\)
lượt xem
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
lượt xem
Họ các nguyên hàm của hàm số \(f\left( x \right) = {x^4} + {x^2}\) là
lượt xem
Trong không gian Oxyz, cho mặt cầu\(\left( S \right)\) tâm \(I(a;b;c)\) bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right).\) Khẳng định nào sau đây đúng?
lượt xem
Phương trình \({4^{3x - 2}} = 16\) có nghiệm là
lượt xem
Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi
lượt xem