Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp.
A. \(\dfrac{{37}}{{64}}V\).
B. \(\dfrac{{27}}{{64}}V\).
C. \(\dfrac{{19}}{{27}}V\).
D. \(\dfrac{8}{{27}}V\).
Lời giải của giáo viên
Gọi \(M,N,P\) lần lượt là trung điểm các cạnh \(AB,BC,AC\) và \({G_1};{G_2};{G_3}\) lần lượt là trọng tâm các tam giác \(SAB;SBC;SAC.\)
Theo tính chất trọng tâm ta có \(\dfrac{{S{G_1}}}{{SM}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{{S{G_3}}}{{SP}} = \dfrac{2}{3}\)
Trong \(\left( {SBC} \right)\), qua \({G_2}\) kẻ đường thẳng song song với \(BC\) cắt \(SB,SC\) lần lượt tại \(E\) và \(F.\)
Trong \(\left( {SAC} \right)\), đường thẳng \(F{G_3}\) cắt \(SA\) tại \(D.\)
Lúc này \(\left( {{G_1}{G_2}{G_3}} \right) \equiv \left( {DEF} \right)\)
Vì \(EF//BC \Rightarrow \dfrac{{SE}}{{SB}} = \dfrac{{SF}}{{SC}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{2}{3}\) (theo định lý Ta-lét)
Lại có trong \(\Delta SPC\) có \(\dfrac{{S{G_3}}}{{SP}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3} \Rightarrow F{G_3}//PC \Rightarrow DF//BC \Rightarrow \dfrac{{SD}}{{SA}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3}\)
Từ đó ta có \(\dfrac{{{V_{S.DEF}}}}{{{V_{S.ABC}}}} = \dfrac{{SD}}{{SA}}.\dfrac{{SE}}{{SB}}.\dfrac{{SF}}{{SC}} = \dfrac{2}{3}.\dfrac{2}{3}.\dfrac{2}{3} = \dfrac{8}{{27}} \Rightarrow {V_{S.DEF}} = \dfrac{8}{{27}}V\)
Nên phần chứa đáy của hình chóp là \(V - \dfrac{8}{{27}}V = \dfrac{{19}}{{27}}V\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
Trong không gian \(Oxyz\), cho mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Xác định tọa độ tâm của mặt cầu \(\left( S \right)\).
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng
Cho hình trụ có bán kính \(R\) và chiều cao\(\sqrt 3 R\). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Trong không gian Oxyz, cho điểm \(M(1; - 2;3)\). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I bán kính IM ?
Trong không gian Oxyz, cho mặt cầu\(\left( S \right)\) tâm \(I(a;b;c)\) bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right).\) Khẳng định nào sau đây đúng?
Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là
Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi có hai đường chéo \(AC = a\), \(BD = a\sqrt 3 \) và cạnh bên \(AA' = a\sqrt 2 \). Thể tích \(V\) của khối hộp đã cho là
Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là
Cho hàm số \(y = \dfrac{{2x + 1}}{{x + 2}}\). Khẳng định nào dưới đây đúng?
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x - 2} + \sqrt {4 - x} \) lần lượt là M và m. Chọn câu trả lời đúng.
Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi