Câu hỏi Đáp án 2 năm trước 37

Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\)  và mặt phẳng (P):\(x - y + 3 = 0\) . Tính số đo góc giữa đường thẳng d và mặt phẳng (P). 

A. 600

Đáp án chính xác ✅

B. 300

C. 1200

D. 450

Lời giải của giáo viên

verified HocOn247.com

Ta có:

\(d:\left\{ \begin{array}{l}x = 1 - t\\y = 2 + 2t\\z = 3 + t\end{array} \right.\)  có 1 véctơ chỉ phương là \(\overrightarrow u  = \left( { - 1;2;1} \right)\) và \(\left( P \right):\,x - y + 3 = 0\) có véctơ pháp tuyến là \(\overrightarrow n  = \left( {1; - 1;0} \right)\)

Khi đó : góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) là :

\(\begin{array}{l}\sin \widehat {\left( {d;\left( P \right)} \right)} = \dfrac{{\left| {\overrightarrow n .\overrightarrow u } \right|}}{{\left| {\overrightarrow n } \right|.\left| {\overrightarrow u } \right|}} = \dfrac{{\left| {1.\left( { - 1} \right) - 1.2 + 0.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + 0} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} }}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{3}{{\sqrt {12} }} = \dfrac{{\sqrt 3 }}{2} \Rightarrow \widehat {\left( {d;\left( P \right)} \right)} = {60^0}\end{array}\)

Chọn A.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là: 

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là: 

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.

Xem lời giải » 2 năm trước 41
Câu 4: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \). 

Xem lời giải » 2 năm trước 40
Câu 5: Trắc nghiệm

Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là: 

Xem lời giải » 2 năm trước 39
Câu 6: Trắc nghiệm

Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .

Xem lời giải » 2 năm trước 39
Câu 7: Trắc nghiệm

Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau: 

Xem lời giải » 2 năm trước 38
Câu 8: Trắc nghiệm

Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\). 

Xem lời giải » 2 năm trước 38
Câu 9: Trắc nghiệm

Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\). 

Xem lời giải » 2 năm trước 38
Câu 10: Trắc nghiệm

Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}}  = 0\). Số bộ \(\left( {a;b;c} \right)\) thỏa mãn điều kiện đã cho là: 

Xem lời giải » 2 năm trước 37
Câu 11: Trắc nghiệm

Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) =  - 10t + 20\)(m/s), trong đó t  là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ? 

Xem lời giải » 2 năm trước 37
Câu 12: Trắc nghiệm

Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành. 

Xem lời giải » 2 năm trước 37
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A. 

Xem lời giải » 2 năm trước 37
Câu 14: Trắc nghiệm

Một vật N1 có dạng hình nón có chiều cao bằng 40cm. Người ta cắt vật N1 bằng một mặt cắt song song với mặt đáy của nó để được một hình nón  nhỏ N2 có thể tích bằng \(\dfrac{1}{8}\) thể tích N1.Tính chiều cao h của hình nón N2?

Xem lời giải » 2 năm trước 37
Câu 15: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^3} + {x^2} - m}}{{x + 1}}\)  trên \(\left[ {0;2} \right]\) bằng 5. Tham số \(m\) nhận giá trị là: 

Xem lời giải » 2 năm trước 37

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »