Cho hình hộp \(ABCD.A'B'C'D'\) có \(A'B\) vuông góc với mặt phẳng đáy \(\left( {ABCD} \right)\); góc của \(AA'\) với \(\left( {ABCD} \right)\)bằng \({45^0}\). Khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(DD'\) bằng \(1\). Góc của mặt \(\left( {BCC'B'} \right)\) và mặt phẳng \(\left( {CC'D'D} \right)\) bẳng \({60^0}\). Thể tích khối hộp đã cho là:
A. \(2\sqrt 3 \)
B. \(2\)
C. \(\sqrt 3 \)
D. \(3\sqrt 3 \)
Lời giải của giáo viên
Gọi H, K lần lượt là hình chiếu của A lên đường thẳng BB’ và DD’. Theo đề bài, ta có: \(AH = AK = 1\)
Ta có:
\(\begin{array}{l}\widehat {\left( {\left( {BB'C'C} \right);\left( {CC'D'D} \right)} \right)} = \widehat {\left( {\left( {ABB'A'} \right);\left( {ADD'A'} \right)} \right)} = {60^0}\\ \Rightarrow \widehat {HAK} = {60^0}\end{array}\)
(do \(\left( {AHK} \right) \bot AA',\,\,AA' = \left( {ABB'A'} \right) \cap \left( {ADD'A'} \right)\))
Ta có: \(AH \bot BB',\,\,BB'//AA' \Rightarrow AH \bot AA'\).
Mà \(\widehat {BAA'} = {45^0} \Rightarrow \widehat {HAB} = {45^0} \Rightarrow AB = AH.\sqrt 2 = \sqrt 2 \)
\( \Rightarrow A'B = AB = \sqrt 2 \)
Kẻ \(KI \bot AH\) tại I. Ta có: \(AA' \bot \left( {AKH} \right) \Rightarrow \left( {AA'B'H} \right) \bot \left( {AKH} \right)\).
Mà \(\left\{ \begin{array}{l}\left( {AA'B'H} \right) \cap \left( {AKH} \right) = AH\\IK \subset \left( {AKH} \right)\\IK \bot AH\end{array} \right. \Rightarrow IK \bot \left( {AA'B'H} \right) \Rightarrow d\left( {K;\left( {AA'B'H} \right)} \right) = IK\)
\( \Rightarrow d\left( {D;\left( {AA'B'H} \right)} \right) = d\left( {K;\left( {AA'B'H} \right)} \right) = IK\) (do \(DK//\left( {AA'B'H} \right)\))
\(\Delta AHK\) có \(\widehat {HAK} = {60^0}\), \(AH = AK = 1 \Rightarrow IK = \dfrac{{1.\sqrt 3 }}{2} = \dfrac{{\sqrt 3 }}{2}\)
\({V_{D.AA'B}} = \dfrac{1}{3}.IK.{S_{AA'B}} = \dfrac{1}{3}.\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{2}.\sqrt 2 .\sqrt 2 = \dfrac{{\sqrt 3 }}{6}\) \( \Rightarrow V = 6.\dfrac{{\sqrt 3 }}{6} = \sqrt 3 \).
Chọn: C
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 10t + 20\)(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ?
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\) . Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.
Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}} = 0\). Số bộ \(\left( {a;b;c} \right)\) thỏa mãn điều kiện đã cho là: