Đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội

Đề chọn học sinh giỏi Toán 12 năm 2020 - 2021 trường THPT Chu Văn An - Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận: Hàm số, Phương trình và hệ phương trình, Giới hạn của dãy số, Tọa độ mặt phẳng Oxy, Hình học không gian, GTLN - GTNN của biểu thức nhiều biến số.
(342) 1140 08/08/2022

Thứ Bảy ngày 12 tháng 09 năm 2020, trường THPT Chu Văn An, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi Toán dự thi thành phố lớp 12 THPT năm học 2020 – 2021.

Đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận: Hàm số, Phương trình và hệ phương trình, Giới hạn của dãy số, Tọa độ mặt phẳng Oxy, Hình học không gian, GTLN – GTNN của biểu thức nhiều biến số.

Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2020 – 2021 trường THPT Chu Văn An – Hà Nội:
+ Trong mặt phẳng Oxy, cho tam giác ABC có M(2;1) là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa đường trung tuyến kẻ từ C. Tìm tọa độ điểm B biết rằng điểm A thuộc đường thẳng d: 2x + 3y – 5 = 0 và điểm C có hoành độ dương.
+ Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi a là số đo của góc BAC và b là số đo của góc giữa đường thẳng OA và mặt phẳng (ABC). Gọi R và S lần lượt là bán kính đường tròn ngoại tiếp và diện tích tam giác ABC. Chứng minh rằng: (cos a)^2/sin 2b = R^2/S.
+ Xét a, b, c là các số thực dương, thoả mãn các điều kiện abc = 1 và a^2 + b^2 + 1/a^2b^2 = 1 + 2/ab. Tìm giá trị nhỏ nhất của biểu thức P = 1/(1 + 3c) – 1/(a^2 + 1) – 1/(1 + b^2).


(342) 1140 08/08/2022