Đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh

THCS.HocOn247 giới thiệu đến bạn đọc đề thi học sinh giỏi Toán 9 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh, đề gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút
(368) 1225 08/08/2022

THCS.HocOn247 giới thiệu đến bạn đọc đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh, đề gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút.

Trích dẫn đề thi học sinh giỏi Toán 9 năm học 2018 – 2019 sở GD&ĐT Bắc Ninh:
+ Cho hàm số y = (m^2 – 4m – 4)x + 3m – 2 có đồ thị là d. Tìm tất cả các giá trị của m để đường thẳng d cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB có diện tích là 1 cm2 (O là gốc tọa độ, đơn vị đo trên các trục là cm).
+ Trong kì thi Olympic có 17 học sinh thi môn Toán được mang số báo danh là số tự nhiên trong khoảng từ 1 đến 1000. Chứng minh rằng có thể chọn ra 9 học sinh thi Toán có tổng các số báo danh được mang chia hết cho 9.
[ads]
+ Cho tam giác ABC nội tiếp trong đường tròn (O) (AB < AC) và đường cao AD. Vẽ đường kính AE của đường tròn (O).
a) Chứng minh rằng AD.AE = AB.AC.
b) Vẽ dây AF của đường tròn (O) song song với BC, EF cắt AC tại Q, BF cắt AD tại P. Chứng minh rằng PQ song song với BC.
c) Gọi K là giao điểm của AE và BC. Chứng minh rằng: AB.AC – AD.AK = √BD.BK.CD.CK.


(368) 1225 08/08/2022