lượt xem
lượt xem
Cho hàm số f(x) thỏa mãn \(f\left( 2 \right) = - \frac{2}{9}\) và \(f'\left( x \right) = 2x{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in R\). Giá trị của \(x \in R\) bằng
lượt xem
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng
lượt xem
Cho phương trình \({5^x} + m = {\log _5}\left( {x - m} \right)\) với m là tham số. Có bao nhiêu giá trị nguyên của \(m \in \left( { - 20;20} \right)\) để phương trình đã cho có nghiệm?
lượt xem
Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A,
B thuộc (C), đoạn thẳng AB có độ dài bằng
lượt xem
Cho a > 0, b > 0 thỏa mãn \({\log _{3a + 2b + 1}}\left( {9{a^2} + {b^2} + 1} \right) + {\log _{6ab + 1}}\left( {3a + 2b + 1} \right) = 2\). Giá trị của a + 2b bằng
lượt xem
Ba bạn A,B,C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Có bao nhiêu số phức z thoả mãn \(\left| z \right|\left( {z - 4 - i} \right) + 2i = \left( {5 - i} \right)z\).
lượt xem
Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO = 2MI(tham khảo hình vẽ). Khi đó cosin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng
lượt xem
Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(y = {x^8} + \left( {m - 2} \right){x^5} - \left( {{m^2} - 4} \right){x^4} + 1\) đạt cực tiểu tại x = 0
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 10} \right)\)?
lượt xem
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình \({16^x} - m{.4^{x + 1}} + 5{m^2} - 45 = 0\) có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?
lượt xem
Trong không gian Oxyz, cho điểm A(1; 2;3) và đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 1}}{1} = \frac{{z + 7}}{{ - 2}}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Ox có phương trình là
lượt xem
lượt xem
lượt xem
Xét các điểm số phức z thỏa mãn \(\left( {\overline z + i} \right)\left( {z + 2} \right)\) là số thuần ảo. Trên mặt phẳng tạo độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC = 2a, SA vuông góc với mặt phẳng đáy và SA = a. Khoảng cách giữa hai đường thẳng AC và SB bằng
lượt xem
Hệ số của x5 trong khai triển nhị thức \(x{\left( {2x - 1} \right)^6} + {\left( {3x - 1} \right)^8}\) bằng
lượt xem
lượt xem
Cho \(\int\limits_{16}^{55} {\frac{{{\rm{d}}x}}{{x\sqrt {x + 9} }}} = a\ln 2 + b\ln 5 + c\ln 11\) với a, b, c là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
lượt xem
Cho hình chóp S.ABC có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng
lượt xem
Tìm hai số thực x và y thỏa mãn \(\left( {2x - 3yi} \right) + \left( {1 - 3i} \right) = x + 6i\) với i là đơn vị ảo.
lượt xem
Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 9\) trên đoạn [-2; 3] bằng:
lượt xem
\(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} \) bằng:
lượt xem
Từ một hộp chứa 11 quả cầu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
lượt xem
Trong không gian Oxyz, mặt phẳng đi qua điểm A(2; -1; 2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SB = 2a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng
lượt xem
Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {x + 9} - 3}}{{{x^2} + x}}\) là
lượt xem
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) \(\left( {a,\,b,\,c,\,d \in R} \right)\). Đồ thị của hàm số y = f(x) như hình vẽ bên. Số nghiệm thực của phương trình \(3f\left( x \right) + 4 = 0\) là
lượt xem
lượt xem
Cho khối chóp có đáy hình vuông cạnh a và chiều cao bằng 2a. Thể tích cả khối chóp đã cho bằng
lượt xem
Phương trình \({2^{2x + 1}} = 32\) có nghiệm là
lượt xem
\(\lim \frac{1}{{5n + 3}}\) bằng
lượt xem
Trong không gian Oxyz, cho hai điểm A(2; -4; 3) và B(2; 2; 7). Trung điểm của đoạn AB có tọa độ là
lượt xem
Đường cong trong hình vẽ bên là của hàm số nào dưới đây
lượt xem
Diện tích mặt cầu bán kính R bằng
lượt xem
Số phức -3 + 7i có phần ảo bằng
lượt xem
Trong không gian Oxyz, đường thẳng \(d:\,\left\{ \begin{array}{l}
x = 2 - t\\
y = 1 + 2t\\
z = 3 + t
\end{array} \right.\) có một véctơ chỉ phương là
lượt xem
Nguyên hàm của hàm số \(f\left( x \right) = {x^3} + x\) là
lượt xem
Với a là số thực dương tùy ý, \(\ln \left( {5a} \right) - \ln \left( {3a} \right)\) bằng
lượt xem
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng?
lượt xem
Cho hàm số y = f(x) có bảng biến thiên như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d,\left( {a,\;b,\;c,\;d \in R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
lượt xem
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\;x + 2y + 3z - 5 = 0\) có một véc-tơ pháp tuyến là
lượt xem
Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 34 học sinh?
lượt xem