Xét các điểm số phức z thỏa mãn \(\left( {\overline z + i} \right)\left( {z + 2} \right)\) là số thuần ảo. Trên mặt phẳng tạo độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng
A. 1
B. 5/4
C. \(\frac{{\sqrt 5 }}{2}\)
D. \(\frac{{\sqrt 3 }}{2}\)
Lời giải của giáo viên
Gọi \(z = a + bi\,\,\left( {a,b \in R} \right)\).
Ta có: \(\left( {\overline z + i} \right)\left( {z + 2} \right) = \left( {a - bi + i} \right)\left( {a + bi + 2} \right) = \left( {{a^2} + 2a + {b^2} - b} \right) + \left( {a - 2b + 2} \right)i\)
Vì \(\left( {\overline z + i} \right)\left( {z + 2} \right)\) là số thuần ảo nên ta có: \({a^2} + 2a + {b^2} - b = 0\)
\( \Leftrightarrow {\left( {a + 1} \right)^2} + {\left( {b - \frac{1}{2}} \right)^2} = \frac{5}{4}\)
Trên mặt phẳng tạo độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng \(\frac{{\sqrt 5 }}{2}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm A(2; 3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng?
Cho khối chóp có đáy hình vuông cạnh a và chiều cao bằng 2a. Thể tích cả khối chóp đã cho bằng
Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 9\) trên đoạn [-2; 3] bằng:
Trong không gian Oxyz, đường thẳng \(d:\,\left\{ \begin{array}{l}
x = 2 - t\\
y = 1 + 2t\\
z = 3 + t
\end{array} \right.\) có một véctơ chỉ phương là
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 10} \right)\)?
Trong không gian Oxyz, mặt phẳng đi qua điểm A(2; -1; 2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là
Cho khối lăng trụ ABC.A'B'C', khoảng cách từ C đến đường thẳng BB' bằng 2, khoảng cách từ A đến các đường thẳng BB' và CC' lần lượt bằng 1 và \(\sqrt 3 \), hình chiếu vuông góc của A lên mặt phẳng (A'B'C) là trung điểm M của B'C' và \(A'M = \frac{{2\sqrt 3 }}{3}\). Thể tích của khối lăng trụ đã cho bằng
Hệ số của x5 trong khai triển nhị thức \(x{\left( {2x - 1} \right)^6} + {\left( {3x - 1} \right)^8}\) bằng
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng
Cho hai hàm số y = f(x), y = g(x). Hai hàm số y = f'(x), y = g'(x) có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y = g'(x).
Hàm số \(h\left( x \right) = f\left( {x + 4} \right) - g\left( {2x - \frac{3}{2}} \right)\) đồng biến trên khoảng nào dưới đây?
Từ một hộp chứa 11 quả cầu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng:
Đường cong trong hình vẽ bên là của hàm số nào dưới đây