Câu hỏi Đáp án 2 năm trước 39

Ông A dự định sử dụng hết 6,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

A. \(2,26\,{{\rm{m}}^3}\)

B. \(1,61\,{{\rm{m}}^3}\)

C. \(1,33\,{{\rm{m}}^3}\)

D. \(1,50\,{{\rm{m}}^3}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Giả sử bể cá có kích thước như hình vẽ.

Ta có: \(2{x^2} + 2xh + 4xh = 6,5 \Leftrightarrow h = \frac{{6,5 - 2{x^2}}}{{6x}}\).

Do h > 0, x > 0 nên \(6,5 - 2{x^2} > 0 \Leftrightarrow 0 < x < \frac{{\sqrt {13} }}{2}\).

Lại có \(V = 2{x^2}h = \frac{{6,5x - 2{x^3}}}{3} = f\left( x \right)\), với \(x \in \left( {0;\frac{{\sqrt {13} }}{2}} \right)\).

\(f'\left( x \right) = \frac{{13}}{6} - 2{x^2},f'\left( x \right) = 0 \Leftrightarrow x =  \pm \frac{{\sqrt {39} }}{6}\).

Vậy \(V \le f\left( {\frac{{\sqrt {39} }}{6}} \right) = \frac{{13\sqrt {39} }}{{54}} \approx 1,50\,{{\rm{m}}^3}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm A(2; 3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình 

Xem lời giải » 2 năm trước 67
Câu 2: Trắc nghiệm

Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 47
Câu 3: Trắc nghiệm

Diện tích mặt cầu bán kính R bằng

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Cho khối chóp có đáy hình vuông cạnh a và chiều cao bằng 2a. Thể tích cả khối chóp đã cho bằng

Xem lời giải » 2 năm trước 46
Câu 5: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 9\) trên đoạn [-2; 3] bằng:

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Trong không gian Oxyz, đường thẳng \(d:\,\left\{ \begin{array}{l}
x = 2 - t\\
y = 1 + 2t\\
z = 3 + t
\end{array} \right.\) có một véctơ chỉ phương là 

Xem lời giải » 2 năm trước 44
Câu 7: Trắc nghiệm

\(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} \) bằng:

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Trong không gian Oxyz,  mặt phẳng đi qua điểm A(2; -1; 2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là

Xem lời giải » 2 năm trước 43
Câu 9: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 10} \right)\)?

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

 Cho khối lăng trụ ABC.A'B'C', khoảng cách từ C đến đường thẳng BB' bằng 2, khoảng cách từ A đến các đường thẳng BB' và CC' lần lượt bằng 1 và \(\sqrt 3 \), hình chiếu vuông góc của A lên mặt phẳng (A'B'C) là trung điểm M  của B'C' và \(A'M = \frac{{2\sqrt 3 }}{3}\). Thể tích của khối lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Hệ số của x5 trong khai triển nhị thức \(x{\left( {2x - 1} \right)^6} + {\left( {3x - 1} \right)^8}\) bằng

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Cho hai hàm số y = f(x), y = g(x). Hai hàm số y = f'(x), y = g'(x) có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y = g'(x).

Hàm số \(h\left( x \right) = f\left( {x + 4} \right) - g\left( {2x - \frac{3}{2}} \right)\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hai hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx - \frac{1}{2}\) và \(g\left( x \right) = d{x^2} + ex + 1\) \(\left( {a,b,c,d,e \in R} \right)\). Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm có hoành độ lần lượt là -3; -1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Với a là số thực dương tùy ý, \(\ln \left( {5a} \right) - \ln \left( {3a} \right)\) bằng 

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »