Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội

Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 - 2020 trường THCS Phú Đô - Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút.
(344) 1145 08/08/2022

Thứ Sáu ngày 19 tháng 06 năm 2020, trường THCS Phú Đô, quận Nam Từ Liêm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ ba giai đoạn học kỳ 2 năm học 2019 – 2020.

Đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút.

Trích dẫn đề khảo sát Toán 9 lần 3 kỳ 2 năm 2019 – 2020 trường THCS Phú Đô – Hà Nội:
+ Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người đi từ A đến B với một vận tốc dự định và thời gian dự định. Nếu người đó đi nhanh hơn mỗi giờ 10km thì đến B sớm hơn dự định 36 phút. Nếu người đó đi chậm hơn mỗi giờ 10km thì đến B muộn hơn dự định 54 phút. Hỏi quãng đường AB dài bao nhiêu km?
+ Cho parabol (P) y = x^2 và đường thẳng (d): y = 2(m – 2)x – 4m + 13.
a) Với m = 4, vẽ (P) và (d) trên cùng một mặt phẳng tọa độ. Tìm tọa độ giao điểm?
b) Tìm giá trị của m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức S = x1^2 + x2^2 + 4x1x2 + 2020 đạt giá trị nhỏ nhất.
[ads]
+ Cho đường tròn (O) và dây BC khác đường kính. Lấy điểm A thuộc cung BC lớn sao cho AB > AC (A khác C). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại M.
a) Chứng minh tứ giác BFEC là tứ giác nội tiếp.
b) Chứng minh EB là tia phân giác của góc DEF.
c) Gọi I là trung điểm BC. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác MED.
d) Qua D kẻ đường thẳng song song với EF cắt các đường thẳng AB, AC lần lượt tại P và N. Chứng minh khi A di động trên cung BC lớn (nhưng vẫn thỏa mãn giả thiết ban đầu) thì đường tròn ngoại tiếp tam giác MNP luôn đi qua một điểm cố định.


(344) 1145 08/08/2022