Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa

Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết
(394) 1312 08/08/2022

Đề thi chọn HSG Toán 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán 11 có lời giải chi tiết.

Trích dẫn đề thi chọn HSG Toán 11:
+ Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất.
+ Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau.
[ads]
+ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.


(394) 1312 08/08/2022