Phương trình \({\left( {\frac{1}{{25}}} \right)^{x - 1}} = {125^{2x}}\) có nghiệm là
lượt xem
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Số nghiệm thực của phương trình \(f\left( {4x - {x^2}} \right) - 2 = 0\) là
lượt xem
Cho hàm số bậc bốn \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như sau
Số điểm cực đại của hàm số \(y = f\left( {\sqrt {{x^2} + 2x + 2} } \right)\) là
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\). Cạnh bên \(SA=x\) và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc \(60^0\).
lượt xem
lượt xem
Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in R\). Mệnh đề nào sau đây đúng?
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), \(SD = \frac{{3a}}{2}\). Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của AB. Khoảng cách từ A đến mặt phẳng (SBD) bằng
lượt xem
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ bên dưới.
Hàm số đã cho đạt cực tiểu tại điểm
lượt xem
Đặt \({\log _2}5 = a\), khi đó \({\log _8}25\) bằng
lượt xem
Ký hiệu \(z_1, z_2\) là hai nghiệm phức của phương trình \({z^2} - 4z + 11 = 0\). Giá trị của \({\left| {{z_1}} \right|^2} + 2{\left| {{z_2}} \right|^2}\) bằng
lượt xem
Diện tích toàn phần của hình trụ có bán kính đáy \(a\) và đường cao \(a\sqrt 3 \) bằng
lượt xem
Điểm M(2;- 3) là điểm biểu diễn của số phức
lượt xem
Có bao nhiêu cách xếp 4 học sinh vào một cái bàn dài có 4 chỗ ngồi?
lượt xem
Cho hai số phức \({z_1} = 2 + 3i\) và \({z_2} = - 3 - 5i\). Tổng phần thực và phần ảo của số phức \(w = {z_1} + {z_2}\) bằng
lượt xem
Tìm tất cả các giá trị thực của tham số m để hàm số \(y = 2{x^3} - m{x^2} + 2x\) đồng biến trên khoảng (- 2;0)
lượt xem
Bỏ ngẫu nhiên 4 lá thư vào 4 phong bì có địa chỉ khác nhau. Gọi A là biến cố “có ít nhất một lá thư đến đúng người nhận”, khi đó P(A) bằng
lượt xem
Cho hình nón có chiều cao ℎ, bán kính đáy r và độ dài đường sinh là l. Khẳng định nào sau đây đúng?
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Hàm số \(y=f(x)\) đồng biến trên khoảng nào dưới đây?
lượt xem
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB=a, AD = a\sqrt 2 \), đường thẳng SA vuông góc với mặt phẳng đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng \(60^0\). Thể tích khối chóp S.ABCD bằng
lượt xem
lượt xem
Cho \(\int\limits_a^b {f\left( x \right)\,{\rm{d}}x} = 7\) và \(\int\limits_a^b {g\left( x \right)\,{\rm{d}}x} = - 3\), khi đó \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]\,{\rm{d}}x} \) bằng
lượt xem
Biết \(\int\limits_1^2 {\frac{{{\rm{d}}x}}{{x\sqrt {x + 2} + \left( {x + 2} \right)\sqrt x }}} = \sqrt a + \sqrt b - c\), với \(a, b, c\) là các số nguyên dương. Giá trị của \(a+b+c\) bằng
lượt xem
lượt xem
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình vẽ bên dưới.
Giá trị của biểu thức \(a+2b+c\) bằng
lượt xem
Biết \(\int {x{e^{2x}}{\rm{d}}x = ax} {e^{2x}} + b{e^{2x}} + C\), với \(a, b\) là các số hữu tỉ. Giá trị của \(ab\) bằng
lượt xem
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):2x - 3y - z - 1 = 0\). Điểm nào sau đây không thuộc mặt phẳng \(\left( \alpha \right)\)?
lượt xem
Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(1;- 1;1) và mặt phẳng \(\left( \alpha \right):2x + y - 2z + 10 = 0\). Mặt cầu (S) tâm I tiếp xúc \(\left( \alpha \right)\) có phương trình là:
lượt xem
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 4}}{{ - 1}}\). Một vectơ chỉ phương của d là
lượt xem
Trong không gian Oxyz, cho các điểm A(1;0;3), B(2;3;- 4) và C(- 3;1;2). Tọa độ điểm D sao cho tứ giác ABCD là hình bình hành là
lượt xem
lượt xem
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
lượt xem
Hàm số \(F\left( x \right) = \cos 3x\) là một nguyên hàm của hàm số
lượt xem
Tập hợp tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm là
lượt xem
Trong mặt phẳng phức, cho w là số phức thay đổi thỏa mãn \(\left| w \right| = 2\), khi đó các điểm biểu diễn số phức \(z = 3w + 1 - 2i\) chạy trên đường có tâm I và bán kính R là
lượt xem
Cho cấp số cộng \((u_n)\) có số hạng tổng quát \({u_n} = 2n + 3\). Số hạng thứ 10 có giá trị bằng
lượt xem
Trong không gian Oxyz, cho điểm M(1;2;3) và đường thẳng \(d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{1}\). Mặt phẳng (P) chứa điểm M và đường thẳng d có phương trình là
lượt xem
Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số \(f_1(x)\), \(f_2(x)\) liên tục trên đoạn \([a;b]\) và hai đường thẳng \(x=a, x=b\).
Công thức tính diện tích của hình (H) là
lượt xem
Trong không gian Oxyz, cho ba điểm \(A\left( {1;2; - 3} \right),B\left( { - 4;2;5} \right)\) và \(M\left( {m + 2;2n - 1;1} \right)\). Điểm M thuộc đường thẳng AB khi và chỉ khi
lượt xem
Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({\log _3}\left( {{3^{2x - 1}} - {3^{x - 1}} + 1} \right) = x\). Giá trị của biểu thức \(\sqrt {{3^{{x_1}}}} - \sqrt {{3^{{x_2}}}} \) bằng
lượt xem
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng \(a\). Góc giữa hai đường thẳng BD và AD' bằng
lượt xem
Cho hàm số \(f(x)\) có đạo hàm là \(f'\left( x \right) = {x^4}{\left( {2x + 1} \right)^2}\left( {x - 1} \right)\). Số điểm cực trị của hàm số \(f(x)\) là
lượt xem
Hàm số \(y = \frac{1}{{{x^2} + 1}}\) có bảng biến thiên như hình vẽ sau
Khẳng định nào sau đây đúng?
lượt xem
Tập xác định của hàm số \(y = {\left( {2 - 3x} \right)^{ - \frac{5}{3}}}\) là
lượt xem
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tập hợp tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) + m = 0\) có ba nghiệm phân biệt là
lượt xem
Tập nghiệm của bất phương trình \({\left( {\sqrt[3]{5}} \right)^{x - 1}} < {5^{x + 3}}\) là
lượt xem
Rút gọn biểu thức \(P = {x^{\frac{1}{6}}}.\sqrt[3]{x}\), với x > 0
lượt xem