Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in R\). Mệnh đề nào sau đây đúng?
A. \(a \in (8; + \infty )\)
B. \(a \in \left( {6;7} \right]\)
C. \(a \in \left( { - 6; - 5} \right]\)
D. \(a \in \left( {2;3} \right]\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số \(F\left( x \right) = \cos 3x\) là một nguyên hàm của hàm số
Cho \(\int\limits_a^b {f\left( x \right)\,{\rm{d}}x} = 7\) và \(\int\limits_a^b {g\left( x \right)\,{\rm{d}}x} = - 3\), khi đó \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]\,{\rm{d}}x} \) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh \(a\), \(SD = \frac{{3a}}{2}\). Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của AB. Khoảng cách từ A đến mặt phẳng (SBD) bằng
Tập nghiệm của bất phương trình \({\left( {\sqrt[3]{5}} \right)^{x - 1}} < {5^{x + 3}}\) là
Trong không gian Oxyz, cho các điểm A(1;0;3), B(2;3;- 4) và C(- 3;1;2). Tọa độ điểm D sao cho tứ giác ABCD là hình bình hành là
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng \(a\). Góc giữa hai đường thẳng BD và AD' bằng
Biết \(\int {x{e^{2x}}{\rm{d}}x = ax} {e^{2x}} + b{e^{2x}} + C\), với \(a, b\) là các số hữu tỉ. Giá trị của \(ab\) bằng
Cho hàm số bậc bốn \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như sau
Số điểm cực đại của hàm số \(y = f\left( {\sqrt {{x^2} + 2x + 2} } \right)\) là
Trong không gian Oxyz, cho điểm M(1;2;3) và đường thẳng \(d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{1}\). Mặt phẳng (P) chứa điểm M và đường thẳng d có phương trình là
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 4}}{{ - 1}}\). Một vectơ chỉ phương của d là
Tập hợp tất cả các giá trị thực của tham số m để phương trình \({e^{3m}} + {e^m} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\) có nghiệm là
Cho hình hình chóp S.ABC có cạnh SA vuông góc với mặt đáy và \(SA = a\sqrt 3 \). Đáy ABC là tam giác đều cạnh bằng \(a\). Thể tích của khối chóp S.ABC bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tập hợp tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) + m = 0\) có ba nghiệm phân biệt là
Cho hai số phức \(z_1, z_2\) thỏa mãn \(\left| {{z_1} + 1 - 2i} \right| + \left| {{z_1} - 3 - 3i} \right| = 2\left| {{z_2} - 1 - \frac{5}{2}i} \right| = \sqrt {17} \). Giá trị lớn nhất của biểu thức \(P = \left| {{z_1} - {z_2}} \right| + \left| {{z_1} + 1 + 2i} \right|\) bằng
Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số \(f_1(x)\), \(f_2(x)\) liên tục trên đoạn \([a;b]\) và hai đường thẳng \(x=a, x=b\).
Công thức tính diện tích của hình (H) là