Cho \({\log _8}\left| x \right| + {\log _4}{y^2} = 5\) và \({\log _8}\left| y \right| + {\log _4}{x^2} = 7.\) Tìm giá trị của biểu thức \(P = \left| x \right| - \left| y \right|.\)
lượt xem
Trong tất cả các hình thang cân có cạnh bên bằng \(2\) và cạnh đáy nhỏ bằng \(4\) , tính chu vi \(P\) của hình thang có diện tích lớn nhất.
lượt xem
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}},\) khẳng định nào sau đây Đúng?
lượt xem
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
lượt xem
Mệnh đề nào sau đây Sai?
lượt xem
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực \(\mathbb{R}\)?
lượt xem
Trong không gian với hệ tọa độ Oxyz, cho các vectơ \(\overrightarrow a = \left( {2;m - 1;3} \right);\,\,\overrightarrow b = \left( {1;3; - 2n} \right)\). Tìm \(m,n\) để các vectơ \(\overrightarrow a ,\,\,\overrightarrow b \) cùng hướng.
lượt xem
Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx\) đồng biến trên đoạn \(\left[ {1;4} \right]\).
lượt xem
lượt xem
Cho cấp số nhân \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu tiên là \({S_n} = {6^n} - 1\). Tìm số hạng thứ năm của cấp số cộng đã cho
lượt xem
Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập \(X = \left\{ {1;3;5;8;9} \right\}\).
lượt xem
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\).
lượt xem
Tính \(\lim \dfrac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng biế thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
lượt xem
Một khối gỗ hình lập phương có thể tích \({V_1}\). Một người thợ mộc muốn gọt giũa khối gỗ đó thành một khối trụ có thể tích là \({V_2}\). Tính tỉ số lớn nhất \(k = \dfrac{{{V_2}}}{{{V_1}}}\)?
lượt xem
Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V\). Tính thể tích khối tứ diện \(ABCB'C'\).
lượt xem
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\). Kết quả \(I = \int\limits_{ - 1}^1 {\dfrac{{f\left( x \right)}}{{1 + {e^x}}}dx} \) bằng:
lượt xem
Chọn ngẫu nhiên một số tự nhiên gồm 7 chữ số khác nhau có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}} \). Tính xác suấ để số được chọn luôn có mặt chữ số 2 và thỏa mãn \({a_1} < {a_2} < {a_3} < {a_4} > {a_5} > {a_6} > {a_7}\).
lượt xem
Cho hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và số thực \(k\) tùy ý. Trong các khẳng định sau, khẳng định nào sai?
lượt xem
Đặt \(a = {\log _2}5,\,\,b = {\log _3}5\). Hãy biểu diễn \({\log _6}5\) theo \(a\) và \(b\).
lượt xem
Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\,\,AD = b,\,AA' = c\). Thể tích khối hộp chữ nhật \(ABCD.A'B'C'D'\) bằng bao nhiêu?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) và \(f\left( 2 \right) = 16\); \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_0^1 {xf'\left( {2x} \right)dx} \)
lượt xem
Gọi \(l,\,\,h,\,\,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diệnt ích xung quanh \({S_{xq}}\) của hình nón là:
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
lượt xem
Khối trụ tròn xoay có đường kính là \(2a\), chiều cao là \(h = 2a\) có thể tích là:
lượt xem
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right) = {x^3} - 3x + 1\,\,\left( C \right)\) tại cực trị của \(\left( C \right)\).
lượt xem
Cho hàm số \(f\left( x \right)\) có \(f\left( 2 \right) = f\left( { - 2} \right) = 0\) và có bảng xét dấu của đạo hàm như sau:
Hàm số \(y = {\left( {f\left( {3 - x} \right)} \right)^2}\) nghịch biến trên khoảng nào dưới đây?
lượt xem
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là:
lượt xem
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) vàc cos bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) - 1 = m\) có đúng 2 nghiệm.
lượt xem
Tìm mệnh đề sai trong các mênh đề sau:
lượt xem
Tích phân \(\int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng:
lượt xem
Trong không gian \(Oxyz\), cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0\). Tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu là:
lượt xem
Tập xác định của hàm số \({\left( {{x^2} - 3x + 2} \right)^\pi }\) là:
lượt xem
Trong không gian với hệ tọa độ \(Oxyz\) cho bốn điểm \(A\left( {1;0;2} \right),\,\,\,B\left( { - 2;1;3} \right),\,\,C\left( {3;2;4} \right),\) \(D\left( {6;9; - 5} \right)\). Tọa độ trọng tâm của tứ diện \(ABCD\) là:
lượt xem
Cho mặt phẳng \(\left( P \right)\) đi qua các điểm \(A\left( { - 2;0;0} \right);\,\,B\left( {0;3;0} \right);\,\,C\left( {0;0; - 3} \right)\). Mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
lượt xem
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Khi đó \(M - m\) bằng:
lượt xem
Trong không gian với hệ tọa độ \(Oxyz\) cho ba điểm \(A\left( {1;0;0} \right);\,\,B\left( {0;2;0} \right);\,\,C\left( {0;0;3} \right)\). Thể tích tứ diện \(OABC\) bằng:
lượt xem
Cho hàm số \(y = f\left( x \right)\) bảng biến thiên như sau:
Phát biểu nào sau đây đúng?
lượt xem
lượt xem
Rút gọn biểu thức \(P = \frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{4 - \sqrt 5 }}.{a^{\sqrt 5 - 2}}}}\) (với \(a > 0\) và \(a \ne 1\) )
lượt xem
Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :
lượt xem
Cho hai tích phân \(\int\limits_{ - 2}^5 {f\left( x \right)dx} = 8\) và \(\int\limits_5^{ - 2} {g\left( x \right)dx} = 3\). Tính \(I = \int\limits_{ - 2}^5 {\left[ {f\left( x \right) - 4g\left( x \right) - 1} \right]dx} \) ?
lượt xem
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {{x^2} - 1} \right)^3},\,\,\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là:
lượt xem
Cho các số thực dương \(a,\,\,b\) với \(a \ne 1\) và \({\log _a}b > 0\). Khẳng định nào sau đây là đúng ?
lượt xem
Cho \(\int\limits_1^2 {f\left( x \right)dx} = 2\). Tính \(\int\limits_1^4 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}dx} \) bằng :
lượt xem
Cho hàm số \(f\left( x \right),\,\,f\left( { - x} \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(2f\left( x \right) + 3f\left( { - x} \right) = \dfrac{1}{{4 + {x^2}}}\). Tính \(I = \int\limits_{ - 2}^2 {f\left( x \right)dx} \).
lượt xem
lượt xem
lượt xem
lượt xem
Tìm hàm số đồng biến trên \(\mathbb{R}\) .
lượt xem