Lời giải của giáo viên
\({\log _6}5 = \dfrac{1}{{{{\log }_5}6}} = \dfrac{1}{{{{\log }_5}2 + {{\log }_5}3}} = \dfrac{1}{{\dfrac{1}{{{{\log }_2}5}} + \dfrac{1}{{{{\log }_3}5}}}} = \dfrac{1}{{\dfrac{1}{a} + \dfrac{1}{b}}} = \dfrac{{ab}}{{a + b}}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \({\left( {{x^2} - 3x + 2} \right)^\pi }\) là:
Trải mặt xung quanh của một hình nón lên một mặt phẳng ta được hình quạt (xem hình bên dưới) là phần của hình tròn có bán kính bằng \(3cm.\) Bán kính đáy \(r\) của hình nón ban đầu gần nhất với số nào dưới đây?
Cho lăng trụ đứng \(ABC.A'B'C'\) có diện tích tam giác \(ABC\) bằng \(2\sqrt 3 \). Gọi \(M,\,\,N,\,\,P\) lần lượt thuộc các cạnh \(AA',\,\,BB',\,\,CC'\), diện tích tam giác \(MNP\) bằng 4. Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {MNP} \right)\).
Trong không gian \(Oxyz\), cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0\). Tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu là:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Khi đó \(M - m\) bằng:
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực \(\mathbb{R}\)?
Tích phân \(\int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng:
Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx\) đồng biến trên đoạn \(\left[ {1;4} \right]\).
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\). Kết quả \(I = \int\limits_{ - 1}^1 {\dfrac{{f\left( x \right)}}{{1 + {e^x}}}dx} \) bằng:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là:
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\).
Cho hàm số \(f\left( x \right)\) có \(f\left( 2 \right) = f\left( { - 2} \right) = 0\) và có bảng xét dấu của đạo hàm như sau:
Hàm số \(y = {\left( {f\left( {3 - x} \right)} \right)^2}\) nghịch biến trên khoảng nào dưới đây?