Cho hàm số \(y = f\left( x \right),\,\,y = g\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và số thực \(k\) tùy ý. Trong các khẳng định sau, khẳng định nào sai?
A. \(\int\limits_a^a {kf\left( x \right)dx} = 0\)
B. \(\int\limits_a^b {xf\left( x \right)dx} = x\int\limits_a^b {f\left( x \right)dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \)
D. \(\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} \).
Lời giải của giáo viên
Dựa vào các đáp án ta dễ dàng nhận thấy các đáp án A, C, D đúng, đáp án B sai.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Tập xác định của hàm số \({\left( {{x^2} - 3x + 2} \right)^\pi }\) là:
Trải mặt xung quanh của một hình nón lên một mặt phẳng ta được hình quạt (xem hình bên dưới) là phần của hình tròn có bán kính bằng \(3cm.\) Bán kính đáy \(r\) của hình nón ban đầu gần nhất với số nào dưới đây?
Cho lăng trụ đứng \(ABC.A'B'C'\) có diện tích tam giác \(ABC\) bằng \(2\sqrt 3 \). Gọi \(M,\,\,N,\,\,P\) lần lượt thuộc các cạnh \(AA',\,\,BB',\,\,CC'\), diện tích tam giác \(MNP\) bằng 4. Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {MNP} \right)\).
Đặt \(a = {\log _2}5,\,\,b = {\log _3}5\). Hãy biểu diễn \({\log _6}5\) theo \(a\) và \(b\).
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực \(\mathbb{R}\)?
Trong không gian \(Oxyz\), cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0\). Tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu là:
Tích phân \(\int\limits_0^2 {\dfrac{x}{{{x^2} + 3}}dx} \) bằng:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Khi đó \(M - m\) bằng:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :
Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx\) đồng biến trên đoạn \(\left[ {1;4} \right]\).
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 1;1} \right]\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx} = 4\). Kết quả \(I = \int\limits_{ - 1}^1 {\dfrac{{f\left( x \right)}}{{1 + {e^x}}}dx} \) bằng:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là:
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\).