Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1 ; 14]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng
lượt xem
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1 ; 2 ; 3) và đi qua điểm A(5 ; -2 ; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {x^8} + \left( {m - 4} \right){x^5} - \left( {{m^2} - 16} \right){x^4} + 1\) đạt cực tiểu khi \(x = 0\)?
lượt xem
lượt xem
lượt xem
lượt xem
lượt xem
Cho phương trình \({7^x} + m = {\log _7}\left( {x - m} \right)\) với m là tham số. Có bao nhiêu giá trị nguyên của \(m \in \left( { - 25;25} \right)\) để phương trình đã cho có nghiệm ?
lượt xem
Cho hàm số \(f\left( x \right)\) thoả mãn \(f\left( 2 \right) = - \dfrac{1}{{25}}\) và \(f'\left( x \right) = 4{x^3}{\left[ {f\left( x \right)} \right]^2}\) với mọi \(x \in R\). Giá trị của \(f\left( 1 \right)\) bằng
lượt xem
Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
lượt xem
lượt xem
Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và M là điểm thuộc đoạn thẳng OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng
lượt xem
Cho a > 0, b > 0 thoả mãn \({\log _{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + {\log _{8ab + 1}}\left( {4a + 5b + 1} \right) = 2\). Giá trị của a + 2b bằng
lượt xem
Có bao nhiêu số phức z thoả mãn \(\left| z \right|\left( {z - 6 - i} \right) + 2i = \left( {7 - i} \right)z\)?
lượt xem
Trong không gian Oxyz, cho đường thẳng \(\Delta: \dfrac{{x + 1}}{2} = \dfrac{y}{{ - 1}} = \dfrac{{z + 2}}{2}\) và mặt phẳng \(\left( P \right):x + y - z + 1 = 0\). Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với ∆ có phương trình là
lượt xem
lượt xem
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình \({4^x} - m{.2^{x + 1}} + 2{m^2} - 5 = 0\) có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?
lượt xem
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA = OB = a và OC = 2a. Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng OM và AC bằng
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{{x + 1}}{{x + 3m}}\) nghịch biến trên khoảng \(\left( {6; + \infty } \right)\)
lượt xem
lượt xem
Hệ số \({x^5}\) trong khai triển biểu thức \(x{\left( {2x - 1} \right)^6} + {\left( {x - 3} \right)^8}\) bằng
lượt xem
Xét các số phức z thỏa mãn \(\left( {\overline z + 2i} \right)\left( {z - 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
lượt xem
lượt xem
Cho \(\int\limits_1^e {\left( {1 + x\ln x} \right)dx = a{e^2} + be + c} \) với a, b, c là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
lượt xem
lượt xem
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 3 a\) , SA vuông góc với mặt phẳng đáy và \(SA = a\). Khoảng cách từ A đến mặt phẳng (SBC) bằng
lượt xem
Tìm hai số thực x và y thỏa mãn \(\left( {3x + yi} \right) + \left( {4 - 2i} \right) = 5x + 2i\) với i là đơn vị ảo.
lượt xem
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn [-2 ; 2] và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(3f\left( x \right) - 4 = 0\) trên đoạn \(\left[ { - 2;2} \right]\) là
lượt xem
Giá trị nhỏ nhất của hàm số \(y = {x^3} + 3{x^2}\;\)trên đoạn \(\left[ { - 4; - 1} \right]\) bằng
lượt xem
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \(AC =a\) ; \(BC =\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = a\). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
lượt xem
\(\int\limits_1^2 {\dfrac{{dx}}{{3x - 2}}} \) bằng
lượt xem
Số tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 25} - 5}}{{{x^2} + x}}\) là
lượt xem
Trong không gian Oxyz, cho 3 điểm A(-1;1;1), B(2;1;0) và C(1;-1;2). Mặt phẳng đi qua A và vuông góc với đường thẳng BC có phương trình là
lượt xem
Từ một hộp chứa 9 quả cầu màu đỏ và 6 quả cầu màu xanh, lấy ngẫu nhiên đồng thời ba quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
lượt xem
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\dfrac{{x + 2}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{2}\) ?
lượt xem
Nguyên hàm của hàm số \(f\left( x \right) = {x^4} + {x^2}\) là
lượt xem
Tập nghiệm của phương trình \(lo{g_3}\left( {{x^2}-7} \right) = 2\) là
lượt xem
Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x + 3y + z-1 = 0\) có một vectơ pháp tuyến là
lượt xem
Số phức 5 + 6i có phần thực bằng
lượt xem
\(\lim \frac{1}{{2n + 7}}\) bằng
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\) . Tâm của (S) có tọa độ là
lượt xem
Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 4a. Thể tích của khối lăng trụ đã cho bằng
lượt xem
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
lượt xem
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
lượt xem
Từ các chữ số \(1,2,3,4,5,6,7\) lập được bao nhiêu số tự nhiên gồm hai chữ số khác nhau?
lượt xem
Cho hình phẳng (H) giới hạn bởi các đường \(y = {x^2} + 3,y = 0,x = 0,x = 2\). Gọi V là thể tích của khối tròn xoay được tạo thành khi quay (H) xung quang trục Ox. Mệnh đề nào dưới đây đúng?
lượt xem
Thể tích của khối trụ tròn xoay có bán kính đáy r và chiều cao h bằng
lượt xem
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a,b,c \in R} \right)\) có đồ thị như hình vẽ bên.
Số điểm cực trị của hàm số đã cho là
lượt xem
Với α là số thực dương tùy ý, \(\ln \left( {7a} \right) - \ln \left( {3a} \right)\) bằng
lượt xem