Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6,6%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhận vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
A. 11 năm
B. 10 năm
C. 13 năm
D. 12 năm
Lời giải của giáo viên
Giả sử sau n năm người đó thu được gấp đôi số tiền ban đầu
\( \Rightarrow 2A = A{\left( {1 + 6,6\% } \right)^n} \Rightarrow n = 10,85\) (năm)
Vậy phải sau ít nhất 11 năm người đó mới thu được số tiền gấp đôi ban đầu.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Từ một hộp chứa 9 quả cầu màu đỏ và 6 quả cầu màu xanh, lấy ngẫu nhiên đồng thời ba quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \(AC =a\) ; \(BC =\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = a\). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 3 a\) , SA vuông góc với mặt phẳng đáy và \(SA = a\). Khoảng cách từ A đến mặt phẳng (SBC) bằng
Cho a > 0, b > 0 thoả mãn \({\log _{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + {\log _{8ab + 1}}\left( {4a + 5b + 1} \right) = 2\). Giá trị của a + 2b bằng
\(\int\limits_1^2 {\dfrac{{dx}}{{3x - 2}}} \) bằng
Từ các chữ số \(1,2,3,4,5,6,7\) lập được bao nhiêu số tự nhiên gồm hai chữ số khác nhau?
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1 ; 2 ; 3) và đi qua điểm A(5 ; -2 ; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng
Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x + 3y + z-1 = 0\) có một vectơ pháp tuyến là
Trong không gian Oxyz, cho 3 điểm A(-1;1;1), B(2;1;0) và C(1;-1;2). Mặt phẳng đi qua A và vuông góc với đường thẳng BC có phương trình là
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{{x + 1}}{{x + 3m}}\) nghịch biến trên khoảng \(\left( {6; + \infty } \right)\)
Thể tích của khối trụ tròn xoay có bán kính đáy r và chiều cao h bằng
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\dfrac{{x + 2}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{2}\) ?
Cho \(\int\limits_1^e {\left( {1 + x\ln x} \right)dx = a{e^2} + be + c} \) với a, b, c là các số hữu tỉ. Mệnh đề nào dưới đây đúng?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\) . Tâm của (S) có tọa độ là