Câu hỏi Đáp án 2 năm trước 92

Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và M là điểm thuộc đoạn thẳng OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng

A. \(\dfrac{{6\sqrt {13} }}{{65}}\) 

B. \(\dfrac{{7\sqrt {85} }}{{85}}\) 

C. \(\dfrac{{17\sqrt {13} }}{{65}}\) 

D. \(\dfrac{{6\sqrt {85} }}{{85}}\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có AB // C’D’ \( \Rightarrow \) Giao tuyến của hai mặt phẳng (MAB) và (MC’D’) là đường thẳng đi qua M và song song với AB, C’D’.

Gọi d là đường giao tuyến của hai mặt phẳng trên.

Do \(M \in OI \Rightarrow MA = MB \Rightarrow \Delta MAB\) cân tại M, tương tự \(\Delta MC'D'\) cân tại M. Gọi E, F lần lượt là trung điểm của AB và C’D’ ta có:

\(\left\{ \begin{array}{l}ME \bot AB \Rightarrow ME \bot d\\MF \bot C'D' \Rightarrow MF \bot d\end{array} \right. \Rightarrow \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)} = \widehat {\left( {ME;MF} \right)}\)

Kẻ MK // A’I, ta có \(A'K = MI = \frac{1}{3}OI = \dfrac{1}{6}AA'\)

Gọi cạnh hình lập phương là 1 \( \Rightarrow A'K = \dfrac{1}{6} \Rightarrow AK = \dfrac{5}{6}\)

Do A’B’C’D’ là hình vuông cạnh 1 \( \Rightarrow KM = A'I = \dfrac{1}{{\sqrt 2 }} \Rightarrow AM = \sqrt {A{K^2} + K{M^2}}  = \sqrt {\frac{{43}}{{36}}} \)

Xét tam giác vuông AME có \(ME = \sqrt {A{M^2} - A{E^2}}  = \sqrt {\dfrac{{43}}{{36}} - \dfrac{1}{4}}  = \dfrac{{\sqrt {34} }}{6}\)

Ta có \(IF = \dfrac{1}{2} \Rightarrow MF = \sqrt {M{I^2} + I{F^2}}  = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( {\dfrac{1}{2}} \right)}^2}}  = \dfrac{{\sqrt {10} }}{6}\)

\(EF = AD' = \sqrt 2 \)

Áp dụng định lí Cosin trong tam giác EFM có:

\(\cos \widehat {EMF} = \dfrac{{M{E^2} + M{F^2} - E{F^2}}}{{2ME.MF}} = \dfrac{{\dfrac{{34}}{{36}} + \dfrac{{10}}{{36}} - 2}}{{2\dfrac{{\sqrt {34} }}{6}.\dfrac{{\sqrt {10} }}{6}}} =  - \dfrac{{7\sqrt {85} }}{{85}}\) 

\(\begin{array}{l} \Rightarrow \cos \widehat {\left( {ME;MF} \right)} = \dfrac{{7\sqrt {85} }}{{85}} = \cos \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)}\\ \Rightarrow \sin \widehat {\left( {\left( {MAB} \right);\left( {MC'D'} \right)} \right)} = \sqrt {1 - {{\left( {\dfrac{{7\sqrt {85} }}{{85}}} \right)}^2}}  = \dfrac{{6\sqrt {85} }}{{85}}\end{array}\)

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Từ một  hộp chứa 9 quả cầu màu đỏ và 6 quả cầu màu xanh, lấy ngẫu nhiên đồng thời ba quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng

Xem lời giải » 2 năm trước 121
Câu 2: Trắc nghiệm

Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Xem lời giải » 2 năm trước 118
Câu 3: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \(AC =a\) ; \(BC =\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = a\). Góc giữa  đường thẳng SB và mặt phẳng đáy bằng

Xem lời giải » 2 năm trước 118
Câu 4: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 3 a\) , SA vuông góc với mặt phẳng đáy và \(SA = a\). Khoảng cách từ A đến mặt phẳng (SBC) bằng

Xem lời giải » 2 năm trước 116
Câu 5: Trắc nghiệm

\(\int\limits_1^2 {\dfrac{{dx}}{{3x - 2}}} \) bằng

Xem lời giải » 2 năm trước 111
Câu 6: Trắc nghiệm

Cho a > 0, b > 0 thoả mãn \({\log _{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + {\log _{8ab + 1}}\left( {4a + 5b + 1} \right) = 2\). Giá trị của a + 2b bằng

Xem lời giải » 2 năm trước 111
Câu 7: Trắc nghiệm

Từ các chữ số \(1,2,3,4,5,6,7\) lập được bao nhiêu số tự nhiên gồm hai chữ số khác nhau?

Xem lời giải » 2 năm trước 109
Câu 8: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1 ; 2 ; 3) và đi qua điểm A(5 ; -2 ; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng

Xem lời giải » 2 năm trước 106
Câu 9: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x + 3y + z-1 = 0\) có một vectơ pháp tuyến là

Xem lời giải » 2 năm trước 106
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho 3 điểm A(-1;1;1), B(2;1;0) và C(1;-1;2). Mặt phẳng đi qua A và vuông góc với đường thẳng BC có phương trình là

Xem lời giải » 2 năm trước 105
Câu 11: Trắc nghiệm

Thể tích của khối trụ tròn xoay có bán kính đáy r và chiều cao h bằng 

Xem lời giải » 2 năm trước 104
Câu 12: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \dfrac{{x + 1}}{{x + 3m}}\)  nghịch biến trên khoảng \(\left( {6; + \infty } \right)\)

Xem lời giải » 2 năm trước 104
Câu 13: Trắc nghiệm

Cho \(\int\limits_1^e {\left( {1 + x\ln x} \right)dx = a{e^2} + be + c} \) với a, b, c là các số hữu tỉ. Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 103
Câu 14: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\) . Tâm của (S) có tọa độ là

Xem lời giải » 2 năm trước 103
Câu 15: Trắc nghiệm

Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\dfrac{{x + 2}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{2}\) ?

Xem lời giải » 2 năm trước 103

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »