Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{({2^x} - 1)({3^x} - 1)...({n^x} - 1)}}{{{x^n} - 1}}\) bằng
lượt xem
Số các giá trị nguyên dương của k thỏa mãn 2k có 100 chữ số khi viết trong hệ thập phân là
lượt xem
Diện tích hình phẳng giới hạn bởi hai đường cong \(y=x^2\) và \(y = 2 - \left| x \right|\) bằng
lượt xem
Điều kiện của tham số m để phương trình \({8^{{{\log }_3}x}} - 3{x^{{{\log }_3}2}} = m\) có nhiều hơn một nghiệm là
lượt xem
Giả sử \(\frac{{1 + 2i}}{{1 - i}}\) là một nghiệm ( phức ) của phương trình \(a{x^2} + bx + c = 0\) trong đó a, b, c là các số nguyên dương. Thế thì a+b+c nhỏ nhất bằng
lượt xem
Số các số tự nhiên có 5 chữ số mà các chữ số của nó tăng dần hoặc giảm dần là
lượt xem
Trong không gian với hệ tọa độ Descartes Oxy cho hai điểm A(1, a) và B( - a, 2). Diện tích tam giác OAB có thể đạt giá trị nhỏ nhất bằng
lượt xem
Kí hiệu M và m theo thứ tự là giá trị lớn nhất và nhỏ nhất của hàm số \(y = {\sin ^3}x + c{\rm{o}}{{\rm{s}}^5}x\). Khi đó M – m bằng
lượt xem
Kí hiệu M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(y = {x^2} + \sqrt {4 - {x^2}} \). Khi đó M + m bằng
lượt xem
Cho hình chóp tam giác S.ABC có SA = a, SB = b, SC = c và \(\widehat {BSC} = 120^\circ ,\widehat {CSA} = 90^\circ ,\widehat {{\rm{AS}}B} = 60^\circ \). Gọi G là trọng tâm của tam giác ABC. Độ dài đoạn SG bằng
lượt xem
Một túi đựng 20 tấm thẻ được đánh số từ 1 đến 20. Rút ngẫu nhiên ra hai tấm thẻ. Xác suất để tích của hai số ghi trên hai tấm thẻ rút được là một số chia hết cho 4 bằng
lượt xem
Số mặt đối xứng của một hình chóp tứ giác đều là
lượt xem
Trong không gian với hệ tọa độ Descartes Oxyz cho mặt cầu (S) có phương trình \({x^2} + {y^2} + {z^2} = 9\) và điểm A(0, -1, 2). Gọi (P) là mặt phẳng qua A và cắt mặt cầu (S) theo một đường tròn có chu vi nhỏ nhất. Phương trình của (P) là
lượt xem
Giá trị của tổng \(C_9^9 + C_{10}^9 + ... + C_{99}^9\) bằng
lượt xem
Cho tanx – tany = 10 và cotx – coty = 5. Giá trị của tan(x – y) là
lượt xem
Hình vuông nội tiếp elip (E) có phương trình \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) thì có diện tích bằng
lượt xem
Trong không gian với hệ tọa độ Descartes Oxyz, cho hai điểm A(3, 2, 1) và B(-1, 4, -3). Điểm M thuộc mặt phẳng (xOy) sao cho \(\left| {MA - MB} \right|\) lớn nhất là
lượt xem
Gieo một con súc sắc năm lần liên tiếp. Xác suất để tích các số chấm xuất hiện ở năm lần gieo đó là một số tự nhiên có tận cùng bằng 5 là
lượt xem
Cho hàm số \(f(x) = \frac{{{4^x}}}{{{4^x} + 2}}\). Giá trị của \(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ... + f\left( {\frac{{99}}{{100}}} \right)\) bằng
lượt xem
Thể tích khối trụ nội tiếp một mặt cầu có bán kính R không đổi có thể đạt giá trị lớn nhất bằng
lượt xem
Đường thẳng nối hai điểm cực trị của đồ thị hàm số \(y = \frac{{m{x^2} + (4 - 2m)x - 6}}{{2(x + 9)}}\) cách gốc tọa độ một khoảng lớn nhất khi m bằng
lượt xem
Số a > 0 thỏa mãn \(\int\limits_a^2 {\frac{1}{{{x^3} + x}}} dx = \ln 2\) là
lượt xem
Cho tam giác ABC. Tập hợp các điểm M trong mặt phẳng thỏa mãn \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) là
lượt xem
Cho hàm số \(f(x) = \frac{1}{{{x^2} - 1}}\). Giá trị của \({f^{(n)}}(0)\) bằng
lượt xem
Giá trị của tổng \(1 + \frac{1}{i} + \frac{1}{{{i^2}}} + ... + \frac{1}{{{i^{2019}}}}\) ( ở đó i2 = -1 ) bằng
lượt xem
Một hình lăng trụ có tổng số đỉnh và số cạnh bằng 200 thì có số đỉnh là
lượt xem
Trên giá sách có 20 cuốn sách. Số cách lấy ra 3 cuốn sao cho giữa 2 cuốn lấy được bất kì luôn có ít nhất hai cuốn không được lấy là
lượt xem
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2x + 4y - 6z + {m^2} - 9m + 4 = 0\) là phương trình của một mặt cầu
lượt xem
Cho \({\log _{27}}\left| a \right| + {\log _9}{b^2} = 5\) và \({\log _{27}}\left| b \right| + {\log _9}{a^2} = 7\).Giá trị của \(\left| a \right| - \left| b \right|\) bằng
lượt xem
Phương trình mặt phẳng cách đều hai đường thẳng d1: \(\frac{{x + 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 2}}{1}\)và d2: \(\frac{{x - 2}}{1} = \frac{{y + 2}}{5} = \frac{z}{{ - 2}}\) là
lượt xem
Hàm số \(f(x) = {(x - 1)^2} + {(x - 2)^2} + ... + {(x - n)^2}\) đạt giá trị nhỏ nhất khi x bằng
lượt xem
Cho z là một số phức khác 0. Miền giá trị của \(\frac{{\left| {z + \overline z } \right| + \left| {z - \overline z } \right|}}{{\left| z \right|}}\) là
lượt xem
Cho dãy số (un) thỏa mãn u1 = 1 và un = un-1 + n với mọi \(n \ge 2\). Khi đó \(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n}}}{{{n^2}}}\) bằng
lượt xem
Bất phương trình \({\log _2}({\log _4}x) + {\log _4}({\log _2}x) \le 2\) có tập nghiệm là
lượt xem
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, độ dài cạnh bên cũng bằng a. Gọi M, N lần lượt là trung điểm các cạnh SA và BC. Góc giữa MN và SC bằng
lượt xem
Giá trị của tổng \(1 + {2^2}C_{99}^2 + {2^4}C_{99}^4 + ... + {2^{98}}C_{99}^{98}\) bằng
lượt xem
Cho tứ diện SABC có trọng tâm G. Một mặt phẳng qua G cắt các tia SA, SB và SC theo thứ tự tại A’, B’ và C’. Đặt \(\frac{{SA'}}{{SA}} = m,\frac{{SB'}}{{SB}} = n,\frac{{SC'}}{{SC}} = p\). Đẳng thức nào dưới đây là đúng
lượt xem
Số mặt phẳng cách đều tất cả các đỉnh của một hình chóp tứ giác là
lượt xem
Cho \(tanx = m\). Giá trị của \(\frac{{{\mathop{\rm sinx}\nolimits} - c{\rm{osx}}}}{{2{{\sin }^3}x - c{\rm{osx}}}}\) bằng
lượt xem
Cho tứ diện đều ABCD có cạnh bằng a. M là một điểm bất kì bên trong tứ diện. Tổng khoảng cách từ M đến các mặt của khối tứ diện là
lượt xem
Một nhóm học sinh gồm 6 bạn nam và 4 bạn nữ đứng ngẫu nhiên thành 1 hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là
lượt xem
Cho hàm số \(y = \left| {{x^3} - x} \right| + m\) với m là một tham số thực. Số điểm cực trị của hàm số đã cho bằng
lượt xem
Trong không gian với hệ tọa độ Descartes Oxyz cho điểm M( a, b, c ). Gọi A, B, C theo thứ tự là điểm đối xứng của M qua mặt phẳng (yOz), (zOx), (xOy). Trọng tâm của tam giác ABC là
lượt xem
Số hạng không chứa x trong khai triển \({\left( {1 + x + {x^2} + \frac{1}{x}} \right)^9}\) bằng
lượt xem
lượt xem
Cho tứ diện OABC có các góc tại đỉnh O đều bằng \(90^0\) và \(OA = a, OB = b, OC = c\). Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng
lượt xem
Giá trị của giới hạn \(\mathop {\lim }\limits_{n \to \infty } \frac{{\overbrace {9 + 99 + ... + 99...9}^n}}{{{{10}^n}}}\) bằng
lượt xem
Hàm số \(f(x) = \sqrt {3 + x} + \sqrt {5 - x} - 3{x^2} + 6x\) đạt giá trị lớn nhất khi x bằng
lượt xem