Một cuộc họp có sự tham gia của 5 nhà Toán học trong đó có 3 nam và 6 nữ, 6 nhà Vật lý trong đó có 3 nam và 3 nữ và 7 nhà Hóa học trong đó có 4 nam và 3 nữ. Người ta muốn lập một ban thư kí gồm 4 nhà khoa học với yêu cầu phải có đủ cả ba lĩnh vực ( Toán, Lý, Hóa ) và có cả nam lẫn nữ. Nếu mọi người đều bình đẳng như nhau thì số cách lập một ban thư kí như thế là
A. 1575
B. 1440
C. 1404
D. 171
Lời giải của giáo viên
Số cách chọn 4 nhà khoa học mà có đủ cả ba lĩnh vực là \(C_5^2C_6^1C_7^1 + C_5^1C_6^2C_7^1 + C_5^1C_6^1C_7^2 = 1575\).
Số cách chọn 4 nhà khoa học nam mà có đủ cả ba lĩnh vực là \(C_3^2C_3^1C_4^1 + C_3^1C_3^2C_4^1 + C_3^1C_3^1C_4^2 = 126\).
Số cách chọn 4 nhà khoa học nữ mà có đủ cả ba lĩnh vực là \(C_2^2C_3^1C_3^1 + C_2^1C_3^2C_3^1 + C_2^1C_3^1C_3^2 = 45\)
Vậy số cách lập một ban thư kĩ thỏa mãn yêu cầu là:
\(1575 - 126 - 45 = 1404\)
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị của tổng \(1 + {2^2}C_{99}^2 + {2^4}C_{99}^4 + ... + {2^{98}}C_{99}^{98}\) bằng
Giả sử \(\frac{{1 + 2i}}{{1 - i}}\) là một nghiệm ( phức ) của phương trình \(a{x^2} + bx + c = 0\) trong đó a, b, c là các số nguyên dương. Thế thì a+b+c nhỏ nhất bằng
Trong không gian với hệ tọa độ Descartes Oxy cho hai điểm A(1, a) và B( - a, 2). Diện tích tam giác OAB có thể đạt giá trị nhỏ nhất bằng
Đường thẳng nối hai điểm cực trị của đồ thị hàm số \(y = \frac{{m{x^2} + (4 - 2m)x - 6}}{{2(x + 9)}}\) cách gốc tọa độ một khoảng lớn nhất khi m bằng
Giá trị của tổng \(1 + \frac{1}{i} + \frac{1}{{{i^2}}} + ... + \frac{1}{{{i^{2019}}}}\) ( ở đó i2 = -1 ) bằng
Cho hàm số \(y = \left| {{x^3} - x} \right| + m\) với m là một tham số thực. Số điểm cực trị của hàm số đã cho bằng
Gieo một con súc sắc năm lần liên tiếp. Xác suất để tích các số chấm xuất hiện ở năm lần gieo đó là một số tự nhiên có tận cùng bằng 5 là
Cho tam giác ABC. Tập hợp các điểm M trong mặt phẳng thỏa mãn \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) là
Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{({2^x} - 1)({3^x} - 1)...({n^x} - 1)}}{{{x^n} - 1}}\) bằng
Số mặt phẳng cách đều tất cả các đỉnh của một hình chóp tứ giác là
Trong không gian với hệ tọa độ Descartes Oxyz, cho hai điểm A(3, 2, 1) và B(-1, 4, -3). Điểm M thuộc mặt phẳng (xOy) sao cho \(\left| {MA - MB} \right|\) lớn nhất là
Thể tích khối trụ nội tiếp một mặt cầu có bán kính R không đổi có thể đạt giá trị lớn nhất bằng
Số a > 0 thỏa mãn \(\int\limits_a^2 {\frac{1}{{{x^3} + x}}} dx = \ln 2\) là
Cho tứ diện OABC có các góc tại đỉnh O đều bằng \(90^0\) và \(OA = a, OB = b, OC = c\). Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng
Trong không gian với hệ tọa độ Descartes Oxyz cho điểm M( a, b, c ). Gọi A, B, C theo thứ tự là điểm đối xứng của M qua mặt phẳng (yOz), (zOx), (xOy). Trọng tâm của tam giác ABC là