Câu hỏi Đáp án 2 năm trước 41

Phương trình mặt phẳng cách đều hai đường thẳng d1: \(\frac{{x + 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 2}}{1}\)và d2: \(\frac{{x - 2}}{1} = \frac{{y + 2}}{5} = \frac{z}{{ - 2}}\) là

A. - 11x + 5y + 7z – 1 = 0

B. 11x - 5y - 7z +1 = 0

C. - 11x + 5y + 7z +1 = 0   

Đáp án chính xác ✅

D. - 11x + 5y + 7z + 11 = 0

Lời giải của giáo viên

verified HocOn247.com

d1 có vecto chỉ phương là \(\overrightarrow {{u_1}}  = (2,3,1)\) tương ứng với 2  có \(\overrightarrow {{u_2}}  = (1,5, - 2)\). Gọi (P) là mặt phẳng cách đều d1 d2 thì (P) có một vecto pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 11,5,7)\). Lấy điểm \(A( - 1,1,2) \in {d_1}\) và \(B(2, - 2,0) \in {d_2}\). Trung điểm đoạn AB là \(I\left( {\frac{1}{2}, - \frac{1}{2},1} \right)\). (P) đi qua I nên có phương trình là

 \(\begin{array}{l}
(P): - 11\left( {x - \frac{1}{2}} \right) + 5\left( {y + \frac{1}{2}} \right) + 7(z - 1) = 0\\
 \Leftrightarrow  - 11x + 5y + 7z + 1 = 0
\end{array}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Giá trị của tổng \(1 + {2^2}C_{99}^2 + {2^4}C_{99}^4 + ... + {2^{98}}C_{99}^{98}\) bằng

Xem lời giải » 2 năm trước 46
Câu 2: Trắc nghiệm

Giả sử \(\frac{{1 + 2i}}{{1 - i}}\) là một nghiệm ( phức ) của phương trình \(a{x^2} + bx + c = 0\) trong đó a, b, c là các số nguyên dương. Thế thì a+b+c nhỏ nhất bằng

Xem lời giải » 2 năm trước 45
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Descartes Oxy cho hai điểm A(1, a) và B( - a, 2). Diện tích tam giác OAB có thể đạt giá trị nhỏ nhất bằng

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Đường thẳng nối hai điểm cực trị của đồ thị hàm số \(y = \frac{{m{x^2} + (4 - 2m)x - 6}}{{2(x + 9)}}\) cách gốc tọa độ một khoảng lớn nhất khi m bằng

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Giá trị của tổng \(1 + \frac{1}{i} + \frac{1}{{{i^2}}} + ... + \frac{1}{{{i^{2019}}}}\) ( ở đó i2 = -1 ) bằng

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Cho hàm số \(y = \left| {{x^3} - x} \right| + m\) với m là một tham số thực. Số điểm cực trị của hàm số đã cho bằng

Xem lời giải » 2 năm trước 45
Câu 7: Trắc nghiệm

Gieo một con súc sắc năm lần liên tiếp. Xác suất để tích các số chấm xuất hiện ở năm lần gieo đó là một số tự nhiên có tận cùng bằng 5 là

Xem lời giải » 2 năm trước 44
Câu 8: Trắc nghiệm

Cho tam giác ABC. Tập hợp các điểm M trong mặt phẳng thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right| = \left| {\overrightarrow {MA}  + 2\overrightarrow {MB}  - \overrightarrow {MC} } \right|\) là

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Giá trị của giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{({2^x} - 1)({3^x} - 1)...({n^x} - 1)}}{{{x^n} - 1}}\) bằng

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

Số mặt phẳng cách đều tất cả các đỉnh của một hình chóp tứ giác là

Xem lời giải » 2 năm trước 43
Câu 11: Trắc nghiệm

Số a > 0 thỏa mãn \(\int\limits_a^2 {\frac{1}{{{x^3} + x}}} dx = \ln 2\) là

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Thể tích khối trụ nội tiếp một mặt cầu có bán kính R không đổi có thể đạt giá trị lớn nhất bằng

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Trong không gian với hệ tọa độ Descartes Oxyz, cho hai điểm A(3, 2, 1) và B(-1, 4, -3). Điểm M thuộc mặt phẳng (xOy) sao cho \(\left| {MA - MB} \right|\) lớn nhất là

Xem lời giải » 2 năm trước 42
Câu 14: Trắc nghiệm

Cho tứ diện OABC có các góc tại đỉnh O đều bằng \(90^0\) và \(OA = a, OB = b, OC = c\). Gọi G là trọng tâm của tứ diện. Thể tích của khối tứ diện GABC bằng

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hàm số \(f(x) = \frac{{{4^x}}}{{{4^x} + 2}}\). Giá trị của \(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ... + f\left( {\frac{{99}}{{100}}} \right)\) bằng

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »