Có bao nhiêu số nguyên x để tồn tại số thực y thỏa mãn \({{\log }_{3}}\left( x+y \right)={{\log }_{4}}\left( {{x}^{2}}+{{y}^{2}} \right)\)?
lượt xem
lượt xem
lượt xem
Xét các số thực dương \(a\), \(b\), \(x\),\(y\) thỏa mãn \(a>1\), \(b>1\) và \({{a}^{x}}={{b}^{y}}=\sqrt{ab}\). Giá trị nhỏ nhất của biểu thức \(P=x+2y\) thuộc tập hợp nào dưới đây?
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[ 0;\frac{5\pi }{2} \right]\) của phương trình \(f\left( \sin x \right)=1\) là
lượt xem
Cho hàm số \(f\left( x \right)\) có \(f\left( 0 \right)=0\) và \({f}'\left( x \right)=\cos x{{\cos }^{2}}2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{0}^{\pi }{f\left( x \right)\text{d}x}\) bằng
lượt xem
Cho hình trụ có chiều cao bằng 6a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng
lượt xem
Cho hàm số \(f\left( x \right)=\frac{ax+1}{bx+c}\ \left( a,\ b,\ c\in \mathbb{R} \right)\) có bảng biến thiên như sau:
Trong các số a, b và c có bao nhiêu số dương?
lượt xem
lượt xem
Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số \(f\left( x \right)=\frac{1}{3}{{x}^{3}}+m{{x}^{2}}+4x+3\) đồng biến trên \(\mathbb{R}?\)
lượt xem
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB=2a, AC=4a. SA vuông góc với mặt phẳng đáy và SA=a (minh học như hình vẽ). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng
lượt xem
lượt xem
Trong không gian Oxyz, cho hai điểm \(M\left( 1;0;1 \right)\) và \(N\left( 3;2;-1 \right).\) Đường thẳng \(MN\( có phương trình tham số là
lượt xem
Trong không gian Oxyz, cho điểm \(M\left( 2;1;0 \right)\) và đường thẳng \(\Delta :\frac{x-3}{1}=\frac{y-1}{4}=\frac{z+1}{-2}.\) Mặt phẳng đi qua M và vuông góc với \(\Delta \) có phương trình là
lượt xem
Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo âm của phương trình \({{z}^{2}}-2z+5=0.\) Môđun của số phức \({{z}_{0}}+i\) bằng
lượt xem
Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Phần ảo của số phức \({z_1}{z_2}\) bằng
lượt xem
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2}\), y = -1, x = 0 và x = 1 được tính bởi công thức nào dưới đây?
lượt xem
Xét \(\int\limits_0^2 {x{{\rm{e}}^{{x^2}}}dx} \), nếu đặt \(u = {x^2}\) thì \(\int\limits_0^2 {x{{\rm{e}}^{{x^2}}}dx} \) bằng
lượt xem
Trong không gian, cho tam giác ABC vuông tại A, AB=a và AC=2a. Khi quay tam giác ABC xung quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh của hình nón đó bằng
lượt xem
Tập nghiệm của bất phương trình \({9^x} + {2.3^x} - 3 > 0\) là
lượt xem
Số giao điểm của đồ thị hàm số \(y = {x^3} - 3x + 1\) và trục hoành là
lượt xem
Xét các số thực a và b thỏa mãn \({\log _3}\left( {{3^a}{{.9}^b}} \right) = {\log _9}3\). Mệnh đề nào dưới đây đúng?
lượt xem
Giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-10{{x}^{2}}+2\) trên đoạn \(\left[ -1;2 \right]\) bằng
lượt xem
Cho hàm số f(x) có bảng xét dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
lượt xem
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), \(SA = a\sqrt 2 \), tam giác ABC vuông cân tại B và AC=2a (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\) . Điểm nào dưới đây thuộc đường thẳng d?
lượt xem
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 3y + z + 2 = 0\) . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
lượt xem
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tâm của (S) có tọa độ là
lượt xem
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; 1; -1) trên mặt phẳng (Oxz) có tọa độ là
lượt xem
Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z = -1 + 2i là điểm nào dưới đây?
lượt xem
Cho hai số phức \({{z}_{1}}=2+i\) và \({{z}_{2}}=1+3i\). Phần thực của số phức \({{z}_{1}}+{{z}_{2}}\) bằng
lượt xem
Số phức liên hợp của số phức \(z=2+i\) là
lượt xem
Nếu \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}=4\) thì \(\int\limits_{0}^{1}{2f\left( x \right)\text{d}x}\) bằng
lượt xem
Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị trong hình bên)
Số nghiệm của phương trình \(f\left( x \right)=-1\) là
lượt xem
Tập nghiệm của bẩt phương trình \(\log x\ge 1\) là
lượt xem
Tiệm cận ngang của đồ thi hàm số \(y=\frac{x-2}{x+1}\) là
lượt xem
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
lượt xem
Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy r bằng
lượt xem
Với a là số thực dương tùy ý, \({{\log }_{2}}\left( {{a}^{3}} \right)\) bằng
lượt xem
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
lượt xem
Cho mặt cầu có bán kính R = 2. Diện tích của mặt cầu đã cho bằng
lượt xem
Cho khối nón có chiều cao h=3 và bán kính đáy r=4. Thể tích của khối nón đã cho bằng
lượt xem
Cho khối chóp có diện tích đáy B=3 và chiều cao h=4. Thể tích của khối chóp đã cho bằng
lượt xem
Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên khoảng K nếu
lượt xem
Tập xác định của hàm số \(y={{\log }_{2}}x\) là
lượt xem
Thể tích của khối lập phương cạnh 2 bằng
lượt xem
Nghiệm của phương trình \({{3}^{x-1}}=27\) là
lượt xem
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và \({{u}_{2}}=9\). Công sai của cấp số cộng đã cho bằng
lượt xem
Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 10 học sinh?
lượt xem