Cho hình trụ có chiều cao bằng 6a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng
A. \(216\pi {{a}^{3}}.\)
B. \(150\pi {{a}^{3}}.\)
C. \(54\pi {{a}^{3}}.\)
D. \(108\pi {{a}^{3}}.\)
Lời giải của giáo viên
Xét thiết diện là hình vuông ABCD có I là trung điểm BC.
Ta có \(AB=BC=6a,\ OI=3a\Rightarrow \Delta OBC\) vuông tại \(O\Rightarrow R=OB=3a\sqrt{2}\Rightarrow V=\pi {{R}^{2}}h=108\pi {{a}^{3}}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB=2a, AC=4a. SA vuông góc với mặt phẳng đáy và SA=a (minh học như hình vẽ). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SM và BC bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 3x + 1\) và trục hoành là
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và \({{u}_{2}}=9\). Công sai của cấp số cộng đã cho bằng
Tập nghiệm của bất phương trình \({9^x} + {2.3^x} - 3 > 0\) là
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; 1; -1) trên mặt phẳng (Oxz) có tọa độ là
Xét các số thực a và b thỏa mãn \({\log _3}\left( {{3^a}{{.9}^b}} \right) = {\log _9}3\). Mệnh đề nào dưới đây đúng?
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2}\), y = -1, x = 0 và x = 1 được tính bởi công thức nào dưới đây?
Xét \(\int\limits_0^2 {x{{\rm{e}}^{{x^2}}}dx} \), nếu đặt \(u = {x^2}\) thì \(\int\limits_0^2 {x{{\rm{e}}^{{x^2}}}dx} \) bằng
Cho hàm số f(x) có bảng xét dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tâm của (S) có tọa độ là
Cho khối nón có chiều cao h=3 và bán kính đáy r=4. Thể tích của khối nón đã cho bằng
Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo âm của phương trình \({{z}^{2}}-2z+5=0.\) Môđun của số phức \({{z}_{0}}+i\) bằng
Cho khối chóp có diện tích đáy B=3 và chiều cao h=4. Thể tích của khối chóp đã cho bằng
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[ 0;\frac{5\pi }{2} \right]\) của phương trình \(f\left( \sin x \right)=1\) là
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), \(SA = a\sqrt 2 \), tam giác ABC vuông cân tại B và AC=2a (minh họa như hình bên). Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng