Cho hàm số y = f(x) có đồ thị trên đoạn [-2;2] như hình vẽ. Hỏi phương trình \(\sqrt {\left| {f(x + 2)} \right| + 3} = \sqrt[3]{{{f^2}(x) - 2f(x) + 9}}\) có bao nhiêu nghiệm thuộc đoạn [-2;2]
lượt xem
lượt xem
Một cấp số cộng và một cấp số nhân có cùng các số hạng thứ m +1 , thứ n + 1, thứ p + 1 là 3 số dương a, b, c. Tính \(T = {a^{b - c}}.{b^{c - a}}.{c^{a - b}}\)
lượt xem
lượt xem
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ ABC.A'B'C' bằng \(\sqrt 3 {a^3}\). Khoảng cách giữa hai đường thẳng AA' và BC bằng
lượt xem
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \({u_{n + 1}} = 3{u_n} - 2{u_{n - 1}}\) và \({u_1} = {\log _2}5,{\mkern 1mu} {\rm{\;}}{u_2} = {\log _2}10\). Giá trị nhỏ nhất của n để \({u_n} > 1024 + {\log _2}\frac{5}{2}\) bằng
lượt xem
lượt xem
Cho số phức \(z = a + bi\) thỏa mãn \(\left| {z - i} \right| = 2\) và \(\left| {z + 3i} \right| + 2\left| {z - 4 - i} \right|\) đạt giá trị nhỏ nhất. Tổng a + b bằng
lượt xem
lượt xem
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?
lượt xem
lượt xem
Cho số phức \({\rm{w}} = (1 + i\sqrt 3 )z + 2\), trong đó z là số phức thỏa mãn \(\left| {z - 1} \right| \le 2\). Mệnh đề nào dưới đây đúng?
lượt xem
Tìm m để hàm số \(y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right)\).
lượt xem
lượt xem
Có bao nhiêu giá trị nguyên của tham số m để phương trình dưới đây có nghiệm thực ?
\(m + \cos x\sqrt {{{\cos }^2}x + 2} + 2\cos x + \left( {\cos x + m} \right)\sqrt {{{\left( {\cos x + m} \right)}^2} + 2} = 0\)
lượt xem
lượt xem
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = 2, các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
lượt xem
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng a3. Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
lượt xem
Cho hàm số \(y = f(x),\;x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;3]. Giá trị của biểu thức \({2^m} + {\log _9}M\) bằng
lượt xem
lượt xem
lượt xem
Tìm các giá trị của tham số m để phương trình \(\frac{{{{\log }_2}(mx)}}{{{{\log }_2}(x + 1)}} = 2\) có nghiệm duy nhất
lượt xem
Giả sử đồ thị (C) của hàm số \(y = \frac{{{{\left( {\sqrt 2 } \right)}^x}}}{{\ln 2}}\) cắt trục tung tại điểm A và tiếp tuyến của (C) tại A cắt trục hoành tại B. Tính diện tích S của tam giác AOB.
lượt xem
Biết \(\int\limits_1^e {\frac{{\sqrt {1 + 3\ln x} .\ln x}}{x}} dx = \frac{a}{b}\); trong đó a, b là 2 số nguyên dương và \(\frac{a}{b}\) là phân số tối giản. Mệnh đề nào dưới đây sai ?
lượt xem
Giá trị nhỏ nhất của hàm \(y = {e^{{x^2} - 2x}}\) trên đoạn [0;2] bằng
lượt xem
Cho hình lập phương \(ABCD{A_1}{B_1}{C_1}{D_1}\) cạnh a. Gọi M, N, P lần lượt là trung điểm của \(B{B_1},CD,{A_1}{D_1}\). Góc giữa hai đường thẳng MP và C1N bằng
lượt xem
Tìm m để hàm số \(y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4\)
lượt xem
Cho hàm số \(y = {x^3} - 3x + 1\) có đồ thị là hình vẽ bên. Tìm m để phương trình \(\left| {{x^3} - 3x + 1} \right| = m\) có 6 nghiệm thực phân biệt
lượt xem
Một hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy R, chiều cao \(R\sqrt 2 \). Mặt phẳng (P) đi qua OO' cắt hình trụ theo một thiết diện có diện tích bằng bao nhiêu?
lượt xem
Nghiệm của bất phương trình \({4^x} < {2^{x + 1}} + 3\) là
lượt xem
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0\). Tọa độ giao điểm của d và (P) là
lượt xem
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng \(x + y - z - 2 = 0,{\rm{ }}x - y + z - 1 = 0\) có phương trình là
lượt xem
Cho biết \(\int\limits_1^3 {\frac{{dx}}{{{e^x} - 1}}} = a\ln ({e^2} + e + 1) - 2b\) với a, b là các số nguyên. Tính K = a + b
lượt xem
Cho hàm số \(f(x) = \frac{a}{{{{\left( {x + 1} \right)}^3}}} + b.x.{e^x}\), biết \(f'\left( 0 \right) = - 22\) và \(\mathop \smallint \limits_0^1 f(x)dx = 5\). Tính S = a + b.
lượt xem
Tìm các giá trị của tham số m để đồ thị hàm số \(y = \frac{{(m - 1)x + m}}{{3x + {m^2}}}\) nhận đường thẳng y = 2 làm tiệm cận ngang
lượt xem
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
lượt xem
Cho hàm \(f(x) = x\ln x\). Nghiệm của phương trình \(f'(x) = 0\) là
lượt xem
Tính thể tích V của khối hộp chữ nhật ABCD.A'B'C'D' biết \(AB = a,AD = 2a,AC' = a\sqrt {14} \).
lượt xem
Thể tích của khối nón có chiều cao \(a\sqrt 3 \), độ dài đường sinh 2a bằng
lượt xem
Hàm số \(y = - {x^4} + 2{x^2} + 3\) đạt cực tiểu tại điểm nào dưới đây ?
lượt xem
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2\)
lượt xem
Nghiệm nguyên nhỏ nhất của bất phương trình \({\log _{0,3}}(3x - 8) > {\log _{0,3}}({x^2} - 4)\) là
lượt xem
Trong các mệnh đề dưới đây, mệnh đề nào sai ?
lượt xem
Đường thẳng đi qua M(2;0;-3) và song song với đường thẳng \(\frac{{x - 1}}{2} = \frac{{y + 3}}{3} = \frac{z}{4}\) có phương trình là
lượt xem
Họ nguyên hàm của hàm số \(f(x) = 4{x^3} - 1\) là
lượt xem
Tọa độ tậm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} + 2y + 26{\rm{z}} + 170 = 0\) là
lượt xem
Cho hàm f(x) có đạo hàm trên đoạn \(\left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )\)
lượt xem
Cho các số dương a, b, c. Tính \(S = {\log _2}\frac{a}{b} + {\log _2}\frac{b}{c} + {\log _2}\frac{c}{a}\)
lượt xem
Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Đồ thị hàm số y = f(x) có tiệm cận đứng là đường thẳng nào dưới đây?
lượt xem
Trong không gian Oxyz, cho \(\overrightarrow {OM} = 3\vec i - 2\vec j + \vec k\). Tìm tọa độ của điểm M.
lượt xem