Lời giải của giáo viên
\(\sqrt[3]{{{f^2}(x) - 2f(x) + 9}} = \sqrt[3]{{{{{\rm{[}}f(x) - 1]}^2} + 8}} \ge \sqrt[3]{8} = 2\) (1)
Đồ thị y = f(x+2) chính là đồ thị y = f(x) nhưng tiến theo Ox 2 đơn vị.
=> -1 \( \le \) f(x+2) \( \le \) 1
=> 0 \( \le \) |f(x+2)| \( \le \) 1
\( => \sqrt {|f(x + 2)| + 3} \le \sqrt {1 + 3} = \sqrt 4 = 2\) (2)
Từ (1) và (2)
\(\begin{array}{l}
\Rightarrow \sqrt[3]{{{f^2}(x) - 2f(x) + 9}} = \sqrt {|f(x + 2)| + 3} = 2\\
\Leftrightarrow \left\{ \begin{array}{l}
f(x) = 1\\
|f(x + 2)| = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = - 2,x = 0,x = 2\\
f(x + 2) = \pm 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = - 2,x = 0,x = 2\\
x = 0,x = 2,x = 4,x = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
x = 2
\end{array} \right.
\end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để hàm số \(y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4\)
Trong không gian Oxyz, cho \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\), \({d_2}:\left\{ {\begin{array}{*{20}{l}}
{x = 2 - t}\\
{y = 3}\\
{z = t}
\end{array}} \right.\). Tìm phương trình của mặt phẳng (P) sao cho \(d_1, d_2\) nằm về hai phía của (P) và (P) cách đều \(d_1, d_2\).
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng \(x + y - z - 2 = 0,{\rm{ }}x - y + z - 1 = 0\) có phương trình là
Tọa độ tậm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} + 2y + 26{\rm{z}} + 170 = 0\) là
Tìm các giá trị của tham số m để phương trình \(\frac{{{{\log }_2}(mx)}}{{{{\log }_2}(x + 1)}} = 2\) có nghiệm duy nhất
Tìm m để hàm số \(y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right)\).
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2\)
Cho hàm f(x) có đạo hàm trên đoạn \(\left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )\)
Cho hàm số \(y = f(x),\;x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;3]. Giá trị của biểu thức \({2^m} + {\log _9}M\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0\). Tọa độ giao điểm của d và (P) là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?
Trong không gian Oxyz, cho \(\overrightarrow {OM} = 3\vec i - 2\vec j + \vec k\). Tìm tọa độ của điểm M.
Một hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy R, chiều cao \(R\sqrt 2 \). Mặt phẳng (P) đi qua OO' cắt hình trụ theo một thiết diện có diện tích bằng bao nhiêu?