Cho hình lăng trụ ABC.A'B'C' có thể tích bằng a3. Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
A. \(\frac{{{a^3}}}{{24}}\)
B. \(\frac{{{a^3}}}{8}\)
C. \(\frac{{{a^3}}}{{12}}\)
D. \(\frac{{{a^3}}}{{16}}\)
Lời giải của giáo viên
Ta có
\(\left\{ \begin{array}{l}
MN\parallel A'C,MN = \frac{1}{2}A'C\\
NP\parallel A'B',NP = \frac{1}{2}A'B'\\
PM\parallel B'C',PM = \frac{1}{2}B'C'
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{S_{MNP}} = \frac{1}{4}{S_{A'B'C'}}\\
(MNP)\parallel (A'B'C')
\end{array} \right.\)
Lăng trụ có đường cao:
\(h \Rightarrow d(G,(MNP)) = \frac{h}{2} \Rightarrow {V_{GMNP}} = \frac{1}{3}.\frac{h}{2}.\frac{1}{4}{S_{A'B'C'}}\)
Bài ra ta có \(h.{S_{A'B'C'}} = {a^3} \Rightarrow {V_{GMNP}} = \frac{{{a^3}}}{{24}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để hàm số \(y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4\)
Trong không gian Oxyz, cho \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\), \({d_2}:\left\{ {\begin{array}{*{20}{l}}
{x = 2 - t}\\
{y = 3}\\
{z = t}
\end{array}} \right.\). Tìm phương trình của mặt phẳng (P) sao cho \(d_1, d_2\) nằm về hai phía của (P) và (P) cách đều \(d_1, d_2\).
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng \(x + y - z - 2 = 0,{\rm{ }}x - y + z - 1 = 0\) có phương trình là
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Tọa độ tậm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} + 2y + 26{\rm{z}} + 170 = 0\) là
Tìm các giá trị của tham số m để phương trình \(\frac{{{{\log }_2}(mx)}}{{{{\log }_2}(x + 1)}} = 2\) có nghiệm duy nhất
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2\)
Tìm m để hàm số \(y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right)\).
Cho hàm f(x) có đạo hàm trên đoạn \(\left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )\)
Cho hàm số \(y = f(x),\;x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;3]. Giá trị của biểu thức \({2^m} + {\log _9}M\) bằng
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0\). Tọa độ giao điểm của d và (P) là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ ABC.A'B'C' bằng \(\sqrt 3 {a^3}\). Khoảng cách giữa hai đường thẳng AA' và BC bằng
Cho hàm số y = f(x) có đồ thị trên đoạn [-2;2] như hình vẽ. Hỏi phương trình \(\sqrt {\left| {f(x + 2)} \right| + 3} = \sqrt[3]{{{f^2}(x) - 2f(x) + 9}}\) có bao nhiêu nghiệm thuộc đoạn [-2;2]