Trong không gian Oxzy, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 2z + 10 = 0\) và cho mặt phẳng \(\left( P \right):x - y + \sqrt 2 z - 7 = 0\). Giả sử \(M \in \left( P \right),\;N \in \left( S \right)\) sao cho MN song song với đường thẳng \(\frac{{x - 5}}{1} = \frac{{y + 2}}{1} = \frac{{z - 4}}{{\sqrt 2 }}\). Khoảng cách giữa hai điểm M, N lớn nhất bằng bao nhiêu ?
A. \(8 - \sqrt 2 \)
B. \(\frac{{2- \sqrt 2 }}{2}\)
C. \(\frac{{4 + \sqrt 2 }}{2}\)
D. \(6 - \sqrt 2 \)
Lời giải của giáo viên
\(\begin{array}{l}
\left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 2z + 10 = 0\\
I\left( {3; - 2;1} \right)\\
R = 2
\end{array}\)
\(d\left( {I;\left( P \right)} \right) = \frac{{\left| {3 + 2 + \sqrt 2 - 7} \right|}}{2} > R\) nên (P) cắt (S)
Gọi d là đường thẳng qua I vuông góc với (P), phương trình (d) là:
\(\frac{{x - 3}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 1}}{{\sqrt 2 }}\)
Gọi T là giao điểm của (d) và (S) với \(d\left( {T;\left( P \right)} \right) > R\)
Có \(d\left( {T;\left( P \right)} \right) = R + d\left( {I;\left( P \right)} \right) = \frac{{6 - \sqrt 2 }}{2}\)
\(\begin{array}{l}
\cos \left( {\overrightarrow u ,\overrightarrow n } \right) = \frac{{1 - 1 + 2}}{{2.2}} = \frac{1}{2}\\
\Rightarrow \sin \left( {MN,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{1}{2}\\
\Rightarrow \left( {MN,\left( P \right)} \right) = {30^0}
\end{array}\)
Gọi H là hình chiều của N lên (P), ta có:
\(MN = \frac{{NH}}{{\sin {{30}^0}}} = 2NH\)
Do đó, để MN lớn nhất, NH lớn nhất. Khi đó \(N \equiv T,H \equiv H'\) với H’ là hình chiếu của I lên (P)
Khi đó \(N{H_{\max }} = TH' = \frac{{6 - \sqrt 2 }}{2} \Rightarrow MN = 6 - \sqrt 2 \)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để hàm số \(y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4\)
Trong không gian Oxyz, cho \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\), \({d_2}:\left\{ {\begin{array}{*{20}{l}}
{x = 2 - t}\\
{y = 3}\\
{z = t}
\end{array}} \right.\). Tìm phương trình của mặt phẳng (P) sao cho \(d_1, d_2\) nằm về hai phía của (P) và (P) cách đều \(d_1, d_2\).
Tìm các giá trị của tham số m để phương trình \(\frac{{{{\log }_2}(mx)}}{{{{\log }_2}(x + 1)}} = 2\) có nghiệm duy nhất
Cho hàm f(x) có đạo hàm trên đoạn \(\left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )\)
Tọa độ tậm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} + 2y + 26{\rm{z}} + 170 = 0\) là
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng \(x + y - z - 2 = 0,{\rm{ }}x - y + z - 1 = 0\) có phương trình là
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Cho hàm số \(y = f(x),\;x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;3]. Giá trị của biểu thức \({2^m} + {\log _9}M\) bằng
Tìm m để hàm số \(y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right)\).
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2\)
Cho hàm số y = f(x) có đồ thị trên đoạn [-2;2] như hình vẽ. Hỏi phương trình \(\sqrt {\left| {f(x + 2)} \right| + 3} = \sqrt[3]{{{f^2}(x) - 2f(x) + 9}}\) có bao nhiêu nghiệm thuộc đoạn [-2;2]
Một hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy R, chiều cao \(R\sqrt 2 \). Mặt phẳng (P) đi qua OO' cắt hình trụ theo một thiết diện có diện tích bằng bao nhiêu?
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0\). Tọa độ giao điểm của d và (P) là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?