Bạn Hoàn có một tấm bìa hình tròn như hình vẽ, Hoàn muốn biến hình tròn đó thành một cái phễu hình nón. Khi đó Hoàn phải cắt bỏ hình quạt AOB rồi dán hai bán kính OA và OB lại với nhau (diện tích chỗ dán nhỏ không đáng kể). Gọi x là góc ở tâm hình quạt tròn dùng làm phễu. Tìm x để thể tích phễu lớn nhất?
A. \(\frac{{2\sqrt 6 }}{3}\pi \)
B. \(\frac{\pi }{3}\)
C. \(\frac{\pi }{2}\)
D. \(\frac{\pi }{4}\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm m để hàm số \(y = {x^3} - 3m{x^2} + 3\left( {2m - 1} \right)x + 1\) đồng biến trên R
Tính diện tích mặt cầu ngoại tiếp một hình lăng trụ tam giác đều có các cạnh đều bằng a.
Cho số phức \(z = - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i.\) Tìm số phức \({\rm{w}} = 1 + z + {z^2}\)
Đường cong trong hình vẽ là đồ thị của đúng một trong bốn hàm số được liệt kê ở bốn phương án dưới đây. Hỏi hàm số đó là hàm số nào?
Cho \(\int\limits_0^3 {{e^{\sqrt {x + 1} }}.\frac{{dx}}{{\sqrt {x + 1} }}} = a.{e^2} + b.e + c,\)với a, b, c là các số nguyên. Tính S = a + b + c
Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.
Phương trình \(\frac{1}{2}{\log _{\sqrt 3 }}\left( {x + 3} \right) + \frac{1}{2}{\log _9}{\left( {x - 1} \right)^4} = 2{\log _9}\left( {4x} \right)\) có tất cả bao nhiêu nghiệm thực phân biệt?
Tìm đạo hàm của hàm số \(y = {\log _2}\left( {{x^2} + 1} \right)\)
Tính \(\lim n\left( {\sqrt {4{n^2} + 3} - \sqrt[3]{{8{n^3} + n}}} \right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên mặt phẳng đáy trùng với trọng tâm tam giác ABD. Cạnh bên SD tạo với đáy một góc \(60^o\)
Tính thể tích khối chóp S.ABCD
Giải phương trình \(c{\rm{os}}3x.\tan 4x = \sin 5x\)
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {1;1;1} \right),B\left( {0;1;2} \right),C\left( { - 2;1;4} \right)\) và mặt phẳng \(\left( P \right):x - y + z + 2 = 0\). Tìm điểm \(N \in \left( P \right)\) sao cho \(S = 2N{A^2} + N{B^2} + N{C^2}\) đạt giá trị nhỏ nhất.
Cho hàm số y =f(x) thỏa mãn \(\int\limits_0^{\frac{\pi }{2}} {{\mathop{\rm s}\nolimits} {\rm{inx}}.f\left( x \right) = f\left( 0 \right) = 1.\,} \)Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\cos x.f'\left( x \right)dx} \)
Đồ thị hàm số \(y = \frac{{\sqrt {6 - {x^2}} }}{{{x^2} + 3x - 4}}\) có tất cả bao nhiêu đường tiệm cận?