Biết hàm số \(y = \sqrt[3]{{{{\left( {3{x^2} - 5x} \right)}^4}}}\) có đạo hàm \(y' = \,\left( {ax + b} \right).\,\sqrt[3]{{\left( {3{x^2} - 5x} \right)}}(a,b \in R)\). Tính \(a+b\).
A. \(a+b=1\)
B. \(a+b=11\)
C. \(a + b = \frac{{44}}{3}\)
D. \(a + b = \frac{{4}}{3}\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tich của khối chóp tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {3; - 2;1} \right),\,B\left( {0;2;1} \right),\,C\left( { - 1;2;0} \right)\). Phương trình mặt phẳng (ABC) là
Tập xác định của hàm số \(y = {\log _7}\frac{{2x - 5}}{{1 + x}}\) là
Trong bốn giới hạn sau đây, giới hạn nào có kết quả bằng 0?
Bảng phía dưới là bảng biến thiên của hàm số nào sau đây?
Dạng \(a+bi\) của số phức \(\frac{1}{{3 + 2i}}\) là số phức nào dưới đây?
Tính thể tích của khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \), cạnh bên bằng \(2a\).
Cho hình bình hành ABCD tâm I. Kết luận nào sau đây sai?(\({T_{\overrightarrow u }}\) là ký hiệu phép tịnh tiến theo véc tơ \(\overrightarrow u \))
Cho hàm số \(y = f\left( x \right) = {\rm{a}}{{\rm{x}}^4} + b{{\rm{x}}^2} + c\) có đồ thị như hình vẽ bên. Số nghiệm của phương trình \(f\left( x \right) + 3 = 0\) bằng
Phương trình \(\log \left( {x - 2} \right) = \log \left( {{x^2} - 4x + m} \right)\) có nghiệm duy nhất khi và chỉ khi
Cho \(x, y\) là các số thực dương thỏa mãn \(xy \le 2x - 1\). Giá trị nhỏ nhất của biểu thức \(S = \frac{{5\left( {x + 2y} \right)}}{y} + \ln \frac{{y + 2x}}{x}\) bằng \(a+\ln b\). Tính \(a+b\).
Tính thể tích hình trụ có bán kính đáy R và chiều cao bằng \(R\sqrt 3 \).
Trong các đa diện sau, đa diện nào luôn nội tiếp được trong một mặt cầu:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;3;2) và đường thẳng \((d'):\,\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 3}}{2}\). Phương trình đường thẳng (d) qua M, vuông góc và cắt (d') là
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân, \(AB = AC = a\), góc \(BAC = {120^0}\), mặt phẳng (AB'C') tạo với đáy một góc \(60^0\). Tính khoảng cách giữa đường thẳng AC và mặt phẳng (A'B'C')