Lời giải của giáo viên
Mỗi đoạn thẳng là một tổ hợp chập 2 của 20.
Số đoạn thẳng là \(C_{20}^2 = 190\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Khối chóp có đáy là hình vuông cạnh \(a\) và chiều cao bằng \(4a\). Thể tích khối chóp đã cho bằng
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( -1;2;0 \right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left( 4;0;-5 \right)\) là
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ chỉ phương của \(d\) là
Trong không gian \(Oxyz\), mặt cầu \({{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=4\) có tâm và bán kính lần lượt là
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội \(q\) của cấp số nhân đã cho