Lời giải của giáo viên
\({\left( {\frac{1}{3}} \right)^{\frac{2}{x}}} + 3{\left( {\frac{1}{3}} \right)^{\frac{1}{x} + 1}} > 12 \Leftrightarrow {\left[ {{{\left( {\frac{1}{3}} \right)}^{\frac{1}{x}}}} \right]^2} + {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} > 12\,\,\left( {x \ne 0} \right)\)
Đặt \(t = {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} > 0\), bất phương trình trở thành \({t^2} + t > 12 \Leftrightarrow {t^2} + t - 12 > 0 \Leftrightarrow \left[ \begin{array}{l}
t > 3\\
t < - 4\,\,(loai)
\end{array} \right.\)
Với \(t > 3 \Leftrightarrow {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} > 3 = {\left( {\frac{1}{3}} \right)^{ - 1}} \Leftrightarrow \frac{1}{x} < - 1 \Leftrightarrow \frac{{1 + x}}{x} < 0 \Leftrightarrow - 1 < x < 0\)
Suy ra tập nghiệm của bất phương trình \(S = \left( { - 1;0} \right) \Rightarrow \left\{ \begin{array}{l}
a = - 1\\
b = 0
\end{array} \right. \Rightarrow P = 3a + 10b = - 3\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong hình dưới đây, điểm B là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúng?
Cho mặt cầu (S) có đường kính 10cm và mặt phẳng (P) cách tâm mặt cầu một khoảng 4cm. Khẳng định nào sau đây là sai?
Cho hàm số \(f\left( x \right) = {3^{x - 4}} + \left( {x + 1} \right){.2^{7 - x}} - 6x + 3\). Giả sử \({m_0} = \frac{a}{b}\) (\(a,b \in Z,\frac{a}{b}\) là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình \(f\left( {7 - 4\sqrt {6x - 9{x^2}} } \right) + 2m - 1 = 0\) có số nghiệm nhiều nhất. Tính giá trị của biểu thức \(P = a + {b^2}\)
Cho hình lập phương ABCD.A'B'C'D'. Gọi M, N lần lượt là trung điểm của cạnh AC và B'C'. Gọi \(\alpha \) là góc hợp giữa đường thẳng MN và mặt phẳng (A'B'C'D'). Tính giá trị của \(\sin \alpha\)
Cho hình nón đỉnh S có đáy là đường tròn tâm O bán kính R. Trên đường tròn (O) lấy 2 điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng \({R^2}\sqrt 2 \), thể tích V của khối nón đã cho bằng
Nguyên hàm của hàm số \(f\left( x \right) = {2^x} + x\) là
Đạo hàm của hàm số \(y = \log \left( {1 - x} \right)\) bằng
Trong không gian với hệ tọa độ Oxyz phương trình nào sau đây là phương trình của mặt phẳng Ozx?
Cho y = F (x) và y = G (x) là những hàm số có đồ thị cho trong hình bên dưới, đặt P (x) = F (x).G (x). Tính P ' (2).
Cho tứ diện đều ABCD có tất cả các cạnh bằng 1. Gọi I là trung điểm của CD. Trên tia AI lấy S sao cho \(\overrightarrow {AI} = 2\overrightarrow {IS} \). Thể tích của khối đa diện ABCDS bằng
Trong không gian với hệ tọa độ Oxyz, đường thẳng \(\Delta :\left\{ \begin{array}{l}
x = 2 - t\\
y = 1\\
z = - 2 + 3t
\end{array} \right.\) không đi qua điểm nào sau đây?
Trong không gian Oxyz, cho điểm \(A\left( {1;0;0} \right),B\left( {0; - 1;0} \right),C\left( {0;0;1} \right),D\left( {1; - 1;1} \right)\). Mặt cầu tiếp xúc 6 cạnh của tứ diện ABCD cắt (ACD) theo thiết diện có diện tích S. Chọn mệnh đề đúng?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x - z + 6 = 0\) và hai mặt cầu \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} = 25;\,\,\,\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 4x - 4z + 7 = 0\). Biết rằng tập hợp tâm I các mặt cầu tiếp xúc với cả hai mặt cầu \((S_1), (S_2)\) và tâm I nằm trên (P) là một đường cong. Tính diện tích hình phẳng giới hạn bởi đường cong đó.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right) = x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}\). Đường thẳng d ' đối xứng với d qua mặt phẳng (P) có phương trình là
Một đường thẳng cắt đồ thị hàm số \(y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ 0, 1, m và n. Tính \(S = {m^2} + {n^2}\).