Câu hỏi Đáp án 2 năm trước 39

Cho các số thực \(a,\,\,b,\,\,c,\,\,d\) thỏa mãn 0<a<b<c<d và hàm số \(y=f\left( x \right)\). Biết hàm số \(y={f}'\left( x \right)\) có đồ thị cắt trục hoành tại các điểm có hoành độ lần lượt là \(a,\,\,b,\,\,c\) như hình vẽ. Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=f\left( x \right)\) trên \(\left[ 0\,;d \right]\). Khẳng định nào sau đây đúng?

A. \(M + m = f\left( b \right) + f\left( a \right)\)

B. \(M + m = f\left( 0 \right) + f\left( a \right)\)

C. \(M + m = f\left( 0 \right) + f\left( c \right)\)

Đáp án chính xác ✅

D. \(M + m = f\left( d \right) + f\left( c \right)\)

Lời giải của giáo viên

verified HocOn247.com

Dựa vào đồ thị của hàm số \(y={f}'\left( x \right)\) ta có bảng biến thiên của hàm \(y=f\left( x \right)\)

Dựa vào bảng biến thiên ta có \(M=\max \left\{ f\left( 0 \right),\,\,f\left( b \right),\,\,f\left( d \right) \right\},m=\min \left\{ f\left( a \right),\,\,f\left( c \right) \right\}\)

Gọi \({{S}_{1}}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=0,\,\,x=a.\)

Gọi \({{S}_{2}}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=a,\,\,x=b.\)

Gọi \({{S}_{3}}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=b,\,\,x=c.\)

Gọi \({{S}_{4}}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\), trục hoành và hai đường thẳng \(x=c,\,\,x=d\)

Dựa vào hình vẽ ta có;

\({{S}_{1}}>{{S}_{2}}\Leftrightarrow \int\limits_{a}^{0}{{f}'\left( x \right)}\,\text{d}x>\int\limits_{a}^{b}{{f}'\left( x \right)}\,\text{d}x\Leftrightarrow f\left( 0 \right)-f\left( a \right)>f\left( b \right)-f\left( a \right)\Leftrightarrow f\left( 0 \right)>f\left( b \right)\).

\({{S}_{3}}>{{S}_{4}}\Leftrightarrow \int\limits_{c}^{b}{{f}'\left( x \right)}\,\text{d}x>\int\limits_{c}^{d}{{f}'\left( x \right)}\,\text{d}x\Leftrightarrow f\left( b \right)-f\left( c \right)>f\left( d \right)-f\left( c \right)\Leftrightarrow f\left( b \right)>f\left( d \right).\)

Suy ra \(M=f\left( 0 \right)\).

\({{S}_{3}}>{{S}_{2}}\Leftrightarrow \int\limits_{c}^{b}{{f}'\left( x \right)}\,\text{d}x>\int\limits_{a}^{b}{{f}'\left( x \right)}\,\text{d}x\Leftrightarrow f\left( b \right)-f\left( c \right)>f\left( b \right)-f\left( a \right)\Leftrightarrow f\left( c \right)<f\left( a \right).\)

Suy ra \(m=f\left( c \right)\)

Vậy \(M+m=f\left( 0 \right)+f\left( c \right)\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-10{{x}^{2}}-4\) trên \(\left[ 0;9 \right]\) bằng

Xem lời giải » 2 năm trước 50
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm \(A\left( 1;2;3 \right)\) và vuông góc với mặt phẳng \(\left( \alpha  \right):4x+3y-7z+1=0\). Phương trình tham số của d là:

Xem lời giải » 2 năm trước 49
Câu 3: Trắc nghiệm

Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a. Biết SA vuông góc với đáy và SA=a (tham khảo hình vẽ). Khoảng cách từ điểm A đến mặt phẳng (SBD) bằng?

Xem lời giải » 2 năm trước 47
Câu 4: Trắc nghiệm

Giả sử \(\int\limits_{0}^{9}{f\left( x \right)\text{d}x}=37\) và \(\int\limits_{9}^{0}{g\left( x \right)\text{d}x}=16\). Khi đó, \(I=\int\limits_{0}^{9}{\left[ 2f\left( x \right)+3g(x) \right]\text{d}x}\) bằng:

Xem lời giải » 2 năm trước 47
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} {x^2} + x - 2{\rm{ khi }}x < 2\\ \frac{1}{x}{\rm{ khi }}x \ge 2 \end{array} \right.\). Tích phân \(\int\limits_{ - \frac{1}{3}}^0 {f\left( {{e^{3x + 1}}} \right){e^{3x}}dx} \) bằng

Xem lời giải » 2 năm trước 46
Câu 6: Trắc nghiệm

Tích phân \(I=\int\limits_{-1}^{1}{(4{{x}^{3}}-3)\text{d}x}\) bằng

Xem lời giải » 2 năm trước 46
Câu 7: Trắc nghiệm

Cho số phức \(z=\frac{1}{3-4i}\). Số phức liên hợp của z là

Xem lời giải » 2 năm trước 45
Câu 8: Trắc nghiệm

Cho \(\int\limits_{-1}^{2}{f\left( x \right)\text{d}x}=2\) và \(\int\limits_{-1}^{2}{g\left( x \right)\text{d}x}=-1\). Tính \(I=\int\limits_{-1}^{2}{\left[ x+2f\left( x \right)+3g\left( x \right) \right]\text{d}x}\) bằng

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2x-4y+6z-2=0\). Tính tọa độ tâm I và bán kính R của \(\left( S \right)\).

Xem lời giải » 2 năm trước 44
Câu 10: Trắc nghiệm

Với a và b là các số thực dương tùy ý, \({{\log }_{a}}\left( {{a}^{2}}b \right)\) bằng

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC biết \(\left( 1;0;-2 \right), B\left( 2;1;-1 \right), C\left( 1;-2;2 \right)\). Tìm tọa độ trọng tâm G của tam giác ABC

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, mặt phẳng nào sau đây đi qua điểm đi qua điểm M(1;-1;1)

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hàm số \(f\left( x \right)=\cos \left( 3x+\frac{\pi }{6} \right)\). Trong các khẳng định sau, khẳng định nào đúng?

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=27\). Gọi \(\left( \alpha  \right)\) là mặt phẳng đi qua hai điểm \(A\left( 0\,;\,0\,;\,-4 \right), B\left( 2;\,0;\,0 \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón đỉnh là tâm của \(\left( S \right)\) và đáy là là đường tròn \(\left( C \right)\) có thể tích lớn nhất. Biết rằng \(\left( \alpha  \right):ax+by-z+c=0\), khi đó a-b+c bằng

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Cho lăng trụ đứng ABC.A'B'C' có đáy là \(\Delta ABC\) vuông cân tại B, \(AC=2\sqrt{2}a\) (minh họa như hình bên). Góc giữa đường thẳng A'B và mặt phẳng \(\left( ABC \right)\) bằng \(60{}^\circ .\) Tính độ dài cạnh bên của hình lăng trụ.

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »