Lời giải của giáo viên
Áp dụng công thức: \({u_{n + 1}} = {u_n}.q\)
Ta có: \({u_2} = {u_1}.q \Rightarrow q = \frac{{{u_2}}}{{{u_1}}} = \frac{6}{2} = 3\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Tập nghiệm của bất phương trình \({{5}^{x-1}}\ge {{5}^{{{x}^{2}}-x-9}}\) là?
Nghiệm của phương trình \({{\log }_{3}}(2x-1)=2\) là
Từ một nhóm học sinh gồm 6 nam và 8 nữ, có bao nhiêu cách chọn ra một học sinh?
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}\) là
Với a là số thực dương tùy ý, \({{\log }_{2}}({{a}^{2}})\) bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Cho hàm số f(x), bảng xát dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
Trong không gian Oxyz, cho mặt phẳng \((\alpha ):3x+2y-4z+1=0\). Vecto nào dưới đây là một vecto pháp tuyến của \((\alpha )\)?