Cho đa giác lồi \({{A}_{1}}{{A}_{2}}...{{A}_{20}}.\) Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
A. \(\frac{24}{57}.\)
B. \(\frac{40}{57}.\)
C. \(\frac{27}{57}.\)
D. \(\frac{28}{57}.\)
Lời giải của giáo viên
Mỗi cách chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác sẽ tạo ra một tam giác và số tam giác là \(n\left( \Omega \right)=C_{20}^{3}.\)
Gọi \(A\) là biến cố 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.
Ta có mỗi tam giác thuộc \(\Omega \) thì có một trong 4 trường hợp sau:
TH1: Cả 3 cạnh của tam giác là các cạnh của đa giác, trường hợp này không có tam giác nào.
TH2: Chỉ có 2 cạnh của tam giác là cạnh của đa giác, khi đó đỉnh chung của 2 cạnh này sẽ là đỉnh của đa giác ban đầu, trường hợp này có 20 tam giác.
TH3: Chỉ có 1 cạnh của tam giác là cạnh của đa giác khi đó ứng với mỗi cạnh bất ký của đa giác thì sẽ có 16 tam giác thỏa mãn, vậy trường hợp này sẽ có 20x16 = 320 tam giác.
TH4: Không có cạnh nào của tam giác là cạnh của đa giác, khi đó tất cả các cạnh của tam giác đều là các đường chéo của đa giác.
Từ đây ta có \(n\left( A \right)=n\left( \Omega \right)-20-320=800\) tam giác.
Vậy xác suất để chọn được 3 đỉnh tạo thành tam giác không có cạnh nào của đa giác đã cho là \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{40}{57}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ -2020;2020 \right]\) để phương trình \(\log \left( mx \right)=2\log \left( x+1 \right)\) có nghiệm duy nhất?
Cho hình lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V.\) Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,A'C'.P\) là điểm trên các cạnh \(BB'\) sao cho \(PB=2PB'.\) Thể tích khối tứ diện \(CMNP\) bằng:
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB=2a,BC=a,AA'=2a\sqrt{3}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là
Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC. \) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{\sqrt{3}}{6}?\)
Cho bất phương trình \({{\log }_{\frac{1}{3}}}\left( {{x}^{2}}-2x+6 \right)\le -2.\) Mệnh đề nào sau đây đúng?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SD=\frac{3a}{2},\) hình chiếu vuông góc của \(S\) trên mặt phẳng \(\left( ABCD \right)\) là trung điểm của cạnh \(AB. \) Tính theo \(a\) thể tích khối chóp \(S.ABCD. \)
Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y=\left| 3{{x}^{4}}-8{{x}^{3}}-6{{x}^{2}}+24x-m \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)
Tìm tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y=\frac{1}{\sqrt{{{\log }_{3}}\left( {{x}^{2}}-2x+3m \right)}}\) có tập xác định là \(\mathbb{R}.\)
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đường thẳng \(y=m\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}\) tại 3 điểm phân biệt \(A,B,C\). B nằm giữa \(A\) và \(C)\) sao cho \(AB=2BC. \) Tính tổng các phần tử thuộc \(S.\)
Đạo hàm của hàm số \(y=\frac{\ln \left( {{x}^{2}}+1 \right)}{x}\) tại điểm \(x=1\) là \(y'\left( 1 \right)=a\ln 2+b,\left( a,b\in \mathbb{Z} \right).\) Tính \(a-b.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) hình vuông cạnh \(a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình trụ có bán kính đáy bằng \(a\) và chiều cao gấp 2 lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.
Cho hình lập phương \(ABCD.A'B'C'D'\) có tâm \(O.\) Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và \(M\) là điểm thuộc đoạn thẳng \(OI\) sao cho \(MO=2MI.\) Khi đó côsin góc tạo bởi hai mặt phẳng \(\left( MC'D' \right)\) và \(\left( MAB \right)\) bằng
Cho hình chóp \(S.ABC\) có \(AB=AC=4,BC=2,SA=4\sqrt{3};\angle SAB=\angle SAC={{30}^{0}}.\) Gọi \({{G}_{1}},{{G}_{2}},{{G}_{3}}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( ABC \right).\) Thể tích của khối chóp \(T.{{G}_{1}}{{G}_{2}}{{G}_{3}}\) bằng \(\frac{a}{b}\) với \(a,b\in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P=2a-b.\)