Lời giải của giáo viên
Xét hàm số \(y=f\left( {{x}^{3}} \right)-2021x=h\left( x \right)\)
\(h'\left( x \right)=3{{x}^{2}}.f'\left( {{x}^{3}} \right)-2021=0\)
\(\Leftrightarrow f'\left( {{x}^{3}} \right)=\frac{2021}{3{{x}^{2}}}\,\,\left( * \right)\) (Chỉ xét \(x\ne 0\) do x=0 không là nghiệm của phương trình)
Đặt \({{x}^{3}}=u\Rightarrow {{x}^{2}}=\sqrt[3]{{{u}^{2}}}\). \(\left( * \right)\) trở thành \(f'\left( u \right)=\frac{2021}{3\sqrt[3]{{{u}^{2}}}}\)
Số nghiệm của phương trình \(\left( * \right)\) chính là số giao điểm của ĐTHS \(y=f'\left( u \right)\) và \(y=\frac{2021}{3\sqrt[3]{{{\mathsf{u}}^{2}}}}\)
Xét hàm số \(y=t\left( u \right)=\frac{2021}{3\sqrt[3]{{{u}^{2}}}}\Rightarrow t'\left( u \right)=-\frac{4042}{9}.\frac{1}{\sqrt[3]{{{u}^{5}}}}\). Ta có BBT:
⇒ Ta có ĐTHS \(y=f'\left( u \right)\) và \(y=\frac{2021}{3\sqrt[3]{{{u}^{2}}}}\) như sau:
Dựa vào ĐTHS, ta thấy đồ thị hàm \(y=f'\left( u \right)\) và đồ thị hàm \(y=\frac{2021}{3\sqrt[3]{{{u}^{2}}}}\) có 1 giao điểm có hoành độ là a
⇒ Phương trình \(f'\left( u \right)=\frac{2021}{3\sqrt[3]{{{u}^{2}}}}\) có 1 nghiệm u=a>0
⇒ Phương trình \(\left( * \right)\) có 1 nghiệm \(x=\sqrt[3]{a}\)
⇒ Phương trình \(h'\left( x \right)=0\) có 1 nghiệm \(x=\sqrt[3]{a}\)
Ta có BBT của hàm số \(h\left( x \right)\)
(Giải thích \(\left( 1 \right) h\left( 0 \right)=f\left( 0 \right)-0=0\))
Từ BBT của hàm số \(y=h\left( x \right)\),ta thu được BBT của hàm số \(y=g\left( x \right)=\left| h\left( x \right) \right|\)
⇒ Hàm \(g\left( x \right)\) có 3 cực trị
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+3}{x-1}\) trên đoạn \(\left[ 2;3 \right]\) lần lượt là M và m. Tổng M+m bằng
Nghiệm của phương trình \({{\log }_{3}}\left( 1-3x \right)=2\) là
Tiệm cận đứng của đồ thị hàm số \(y=\frac{-2x+4}{-x+1}\) là đường thẳng:
Cho số phức z=2+3i. Tìm môđun của số phức \(w=\left( 1+i \right)z-\bar{z}\)
Cho khối chóp S.ABCD có đáy là hình vuông cạnh đáy bằng a và SA vuông góc với đáy với \(SA=a\sqrt{3}.\) Thể tích của khối chóp S.ABCD bằng
Trong không gian Oxyz, một véctơ chỉ phương của đường thẳng \(d:\frac{x-2}{-1}=\frac{y-1}{2}=\frac{z}{1}\) là
Cho hàm số \(y={{x}^{4}}-3{{x}^{2}}+m\) có đồ thị \(\left( {{C}_{m}} \right)\),với m là tham số thực.Giả sử \(\left( {{C}_{m}} \right)\) cắt trục Ox tại bốn điểm phân biệt như hình vẽ
Gọi \({{S}_{1}},{{S}_{2}},{{S}_{3}}\) là diện tích các miền gạch chéo được cho trên hình vẽ. Giá trị của m để \({{S}_{1}}+{{S}_{3}}={{S}_{2}}\) là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-1 \right)}^{2}}=9\). Tìm tọa độ tâm I của mặt cầu \(\left( S \right)\).
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{\left[ f\left( x \right)+3{{x}^{2}} \right]\text{d}x}=6\). Khi đó \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
Cho hàm số \(f\left( x \right)=-3{{x}^{2}}+1.\) Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian Oxyz, cho tam giác ABC với \(A\left( 3;1;2 \right), B\left( -3;2;5 \right), C\left( 1;6;-3 \right)\). Khi đó phương trình trung tuyến AM của tam giác ABC là
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;1 \right), B\left( 0;3;-1 \right)\). Mặt cầu \(\left( S \right)\) đường kính AB có phương trình là
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B với AB=BC=a, AD=2a. Biết \(SA\bot \left( ABCD \right)\) và SA=a. Tính khoảng cách giữa AD và SB.
Với a là số thực dương tùy ý, \(a\sqrt[3]{a}\) bằng
Hàm số nào sau đây đồng biến trên tập xác định của nó?