Cho f(x) và g(x) là các hàm số liên tục bất kì trên đoạn [a;b]. Mệnh đề nào sau đây đúng ?
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada
% abdaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHsisl
% caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLhWUaayjcSd
% GaamizaiaadIhacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadIha
% aiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaamyyaaqaaiaadkgaa0
% Gaey4kIipakiabgkHiTmaapehabaGaam4zamaabmaabaGaamiEaaGa
% ayjkaiaawMcaaiaadsgacaWG4baaleaacaWGHbaabaGaamOyaaqdcq
% GHRiI8aaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa!5C1A!
\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} } \)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada
% WadaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHsisl
% caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa
% GaamizaiaadIhacqGH9aqpdaWdXbqaaiaadAgadaqadaqaaiaadIha
% aiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaamyyaaqaaiaadkgaa0
% Gaey4kIipakiabgkHiTmaapehabaGaam4zamaabmaabaGaamiEaaGa
% ayjkaiaawMcaaiaadsgacaWG4baaleaacaWGHbaabaGaamOyaaqdcq
% GHRiI8aaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa!5AEA!
\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} } \)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada
% WdXbqaamaadmaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMca
% aiabgkHiTiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawU
% facaGLDbaaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdaakiaawEa7
% caGLiWoacaWGKbGaamiEaiabg2da9maapehabaGaamOzamaabmaaba
% GaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacaWGHbaabaGa
% amOyaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGNbWaaeWaaeaaca
% WG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaadggaaeaacaWG
% IbaaniabgUIiYdaaaa!5E16!
\left| {\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} } \right|dx = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} \)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada
% WadaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHsisl
% caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa
% GaamizaiaadIhacqGH9aqpdaabdaqaamaapehabaGaamOzamaabmaa
% baGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacaWGHbaaba
% GaamOyaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGNbWaaeWaaeaa
% caWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaadggaaeaaca
% WGIbaaniabgUIiYdaakiaawEa7caGLiWoaaSqaaiaadggaaeaacaWG
% IbaaniabgUIiYdaaaa!5E16!
\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = \left| {\int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} } \right|} \)
Lời giải của giáo viên
Sử dụng các tính chất của tích phân: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WadaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGHXcqS % caWGNbWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaa % aaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaamizaiaadIhacqGH % 9aqpdaWdXbqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaaca % WGKbGaamiEaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiabggla % XoaapehabaGaam4zamaabmaabaGaamiEaaGaayjkaiaawMcaaiaads % gacaWG4baaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa!5CF6! \int\limits_a^b {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)dx} \pm \int\limits_a^b {g\left( x \right)dx} \)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z = -2+ i . Trong hình bên điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG6baaaaaa!3704! \overline z \) là:
Trong không gian Oxyz, cho hai điểm A(-2;-1;3) và B( 0 ; 3 ;1) . Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng trung trực của AB. Một vecto pháp tuyến của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) có tọa độ là:
Biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadw % gadaahaaWcbeqaaiaadIhaaaaaaa!3905! x{e^x}\) là một nguyên hàm của hàm số f(-x) trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaaa % aa!3CED! \left( { - \infty ; + \infty } \right)\). Gọi F(x) là một nguyên hàm của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaa % caWG4baaaaaa!3C24! f'\left( x \right){e^x}\) thỏa mãn F(0) = 1, giá trị của F(-1) bằng:
Từ các chữ số 1; 2; 3;…; 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEaiab % gkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccq % GHsislcaaIZaGaamiEaiabgUcaRiaaiodaaaa!43D3! f\left( x \right) = {\left( {x - 1} \right)^3} - 3x + 3\). Đồ thị hình bên là của hàm số có công thức:
Trong không gian Oxyz, một vecto chỉ phương của đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai % OoamaalaaabaGaamiEaiabgkHiTiaaigdaaeaacaaIXaaaaiabg2da % 9maalaaabaGaamyEaiabgUcaRiaaiodaaeaacaaIYaaaaiabg2da9m % aalaaabaGaamOEaiabgkHiTiaaiodaaeaacqGHsislcaaI1aaaaaaa % !4562! \Delta :\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 5}}\) có tọa độ là:
Trong không gian Oxyz, cho đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIZaaabaGaaGOmaaaacqGH9aqp % daWcaaqaaiaadMhacqGHsislcaaI0aaabaGaaGymaaaacqGH9aqpda % WcaaqaaiaadQhacqGHsislcaaIYaaabaGaaGymaaaaaaa!4401! d:\frac{{x - 3}}{2} = \frac{{y - 4}}{1} = \frac{{z - 2}}{1}\) và 2 điểm A( 6;3;-2); B(1;0;-1). Gọi \(\Delta\) là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến \(\Delta\) là nhỏ nhất. Một vectơ chỉ phương của có tọa độ:
Cho hình hộp ABCD.A'B'C'D' có thể tích bằng V.Gọi M, N, P, Q, E, F lần lượt là tâm các hình bình hành ABCD,A'B'C'D', ABA'B', BCB'C',DAA'D'. Thể tích khối đa diện có các đỉnh M, P, Q, E, F, N bằng:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaa % dIhacqGHRaWkciGGZbGaaiyAaiaac6gacaaMc8UaamiEaiGacogaca % GGVbGaai4CaiaadIhacqGHRaWkcaaIXaaabaGaci4yaiaac+gacaGG % ZbWaaWbaaSqabeaacaaI0aaaaOGaamiEaiabgUcaRiGacohacaGGPb % GaaiOBaiaaykW7caWG4bGaci4yaiaac+gacaGGZbWaaWbaaSqabeaa % caaIZaaaaOGaamiEaaaacaWGKbGaamiEaaWcbaWaaSaaaeaacqaHap % aCaeaacaaI0aaaaaqaamaalaaabaGaeqiWdahabaGaaG4maaaaa0Ga % ey4kIipakiabg2da9iaadggacqGHRaWkcaWGIbGaciiBaiaac6gaca % aIYaGaey4kaSIaam4yaiGacYgacaGGUbWaaeWaaeaacaaIXaGaey4k % aSYaaOaaaeaacaaIZaaaleqaaaGccaGLOaGaayzkaaaaaa!6DBA! \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin \,x\cos x + 1}}{{{{\cos }^4}x + \sin \,x{{\cos }^3}x}}dx} = a + b\ln 2 + c\ln \left( {1 + \sqrt 3 } \right)\), với a, b, c là các số hữu tỉ. Giá trị của abc bằng:
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a , SA = a và SA \(\bot\) (ABCD). Thể tích khối chóp SABCD bằng:
Bất phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaisdaaeqaaOWaaeWaaeaacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaeyOeI0IaaG4maiaadIhaaiaawIcacaGLPa % aacqGH+aGpciGGSbGaai4BaiaacEgadaWgaaWcbaGaaGOmaaqabaGc % daqadaqaaiaaiMdacqGHsislcaWG4baacaGLOaGaayzkaaaaaa!48D8! {\log _4}\left( {{x^2} - 3x} \right) > {\log _2}\left( {9 - x} \right)\) có bao nhiêu nghiệm nguyên?
Gọi (D) là hình phẳng giới hạn bởi các đường \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaaikdadaahaaWcbeqaaiaadIhaaaGccaGGSaGaamyEaiabg2da % 9iaaicdacaGGSaGaamiEaiabg2da9iaaicdaaaa!40C3! y = {2^x},y = 0,x = 0\) và x = 2. Thể tích V của khối tròn xoay tạo thành khi quay (D) quanh trục Ox được xác định bởi công thức:
Có bao nhiêu số nguyên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI % GiopaabmaabaGaeyOeI0IaaGOmaiaaicdacaaIXaGaaGyoaiaacUda % caaIYaGaaGimaiaaigdacaaI5aaacaGLOaGaayzkaaaaaa!417B! a \in \left( { - 2019;2019} \right)\) để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaciiBaiaac6gadaqadaqaaiaadIhacqGHRaWkcaaI1aaa % caGLOaGaayzkaaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaiodada % ahaaWcbeqaaiaadIhaaaGccqGHsislcaaIXaaaaiabg2da9iaadIha % cqGHRaWkcaWGHbaaaa!45DB! \frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} - 1}} = x + a\) có hai nghiệm phân biệt?
Cho hình chóp đều S.ABCD có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaamyyaiaacYcacaWGtbGaamyqaiabg2da9iaa % dggadaGcaaqaaiaaiwdaaSqabaaaaa!3F3D! AB = 2a,SA = a\sqrt 5 \) . Góc giữa hai mặt phẳng (SAB) và (ABCD) bằng:
Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa % aaleaacaaIXaaabeaakiaacYcacaWG6bWaaSbaaSqaaiaaikdaaeqa % aaaa!3A7B! {z_1},{z_2}\) là các nghiệm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaG4m % aiabg2da9iaaicdaaaa!3DED! {z^2} - 2z + 3 = 0\). Modul của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa % aaleaacaaIXaaabaGaaG4maaaakiaac6cacaWG6bWaa0baaSqaaiaa % ikdaaeaacaaI0aaaaaaa!3BFA! z_1^3.z_2^4\) bằng: