Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) trong hình bên. Hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({{x}_{1}},\,\,{{x}_{2}}\) thỏa \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0\). Gọi \(A,\,\,B\) là hai điểm cực trị của đồ thị \(\left( C \right);M,\,\,N,\,\,K\) là giao điểm của \(\left( C \right)\) với trục hoành; S là diện tích của hình phẳng được gạch trong hình, \({{S}_{2}}\) là diện tích tam giác NBK. Biết tứ giác MAKB nội tiếp đường tròn, khi đó tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
A. \(\frac{2\sqrt{6}}{3}\).
B. \(\frac{\sqrt{6}}{2}\).
C. \(\frac{5\sqrt{3}}{6}\).
D. \(\frac{3\sqrt{3}}{4}\).
Lời giải của giáo viên
Kết quả bài toán không thay đổi khi ta tịnh tiến đồ thị đồ thị \(\left( C \right)\) sang trái sao cho điểm uốn trùng với gốc tọa độ O. (như hình dưới)
Do \(f\left( x \right)\) là hàm số bậc ba, nhận gốc tọa độ là tâm đối xứng \(\left( O\equiv N \right)\).
Đặt \({{x}_{1}}=-a,\,\,{{x}_{2}}=a\), với a>0 \(\Rightarrow f'\left( x \right)=k\left( {{x}^{2}}-{{a}^{2}} \right)\) với k>0
\(\Rightarrow f\left( x \right)=k\left( \frac{1}{3}{{x}^{3}}-{{a}^{2}}x \right)\) \(\Rightarrow {{x}_{M}}=-a\sqrt{3},\,\,{{x}_{K}}=a\sqrt{3}\)
Có MAKB nội tiếp đường tròn tâm O \(\Rightarrow OA=OM=a\sqrt{3}\)
Có \(f\left( {{x}_{1}} \right)=\sqrt{O{{A}^{2}}-{{x}_{1}}^{2}}\Leftrightarrow f\left( -a \right)=a\sqrt{2}\Leftrightarrow k\left( -\frac{1}{3}{{a}^{3}}+{{a}^{3}} \right)=a\sqrt{2}\Leftrightarrow k=\frac{3\sqrt{2}}{2{{a}^{2}}}\)
\(\Rightarrow f\left( x \right)=\frac{3\sqrt{2}}{2{{a}^{2}}}\left( \frac{1}{3}{{x}^{3}}-{{a}^{2}}x \right)\)
\({{S}_{1}}=\int\limits_{-a\sqrt{3}}^{0}{f\left( x \right)dx}=\frac{3\sqrt{2}}{2{{a}^{2}}}\left. \left( \frac{1}{12}{{x}^{4}}-\frac{{{a}^{2}}}{2}{{x}^{2}} \right) \right|_{-a\sqrt{3}}^{0}=\frac{9\sqrt{2}}{8}{{a}^{2}}\)
\({{S}_{2}}={{S}_{\Delta AMO}}=\frac{1}{2}f\left( -a \right).MO=\frac{1}{2}a\sqrt{2}.a\sqrt{3}=\frac{\sqrt{6}}{2}{{a}^{2}}\)
Vậy \(\frac{{{S}_{1}}}{{{S}_{2}}}=\frac{3\sqrt{3}}{4}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)
Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?
Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( 0;1;-2 \right),B\left( 3;-2;1 \right)\) và \(C\left( 1;5;-1 \right)\). Phương trình tham số của đường thẳng CD là:
Trong không gian \(Oxyz\), mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=25\) có tâm là
Công thức thể tích của khối nón có bán kính đáy là \(\frac{r}{2}\) và chiều cao h là
Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm dưới đây
Số điểm cực trị của hàm số là
Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại có \(AB=a,A{A}'=a\sqrt{2}\). Góc giữa đường thẳng \({A}'C\) với mặt phẳng \(\left( A{A}'{B}'B \right)\) bằng:
Trong không gian Oxyz, mặt cầu có tâm \(I\left( 3;-1;2 \right)\) và tiếp xúc với trục \(Ox\) có phương trình là:
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 25-{{x}^{2}} \right)\le 2\) là
Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng vuông góc với trục \(Oy\)?
Cho hai số phức z và \(\text{w}\) thỏa mãn z=-i+2 và \(\overline{\text{w}}=-3-2i\). Số phức \(\overline{z}.\text{w}\) bằng:
Cho \(\int\limits_{2}^{3}{f(x)\text{d}x}=-2\) . Tính \(I=\int\limits_{-\frac{3}{2}}^{-1}{f(-2x)\text{d}x}\) ?
Với \(a\) là số thực dương tùy ý, \(a.\sqrt[3]{{{a}^{2}}}\) bằng