Câu hỏi Đáp án 2 năm trước 30

Cho hàm số đa thức bậc bốn y = f(x), biết hàm số có ba điểm cực trị x =  - 3; x = 3; x = 5. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số \(g\left( x \right) = f\left( {{e^{{x^3} + 3{x^2}}} - m} \right)\) có đúng 7 điểm cực trị 

A. 3

B. 4

C. 5

D. 6

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có \(g'\left( x \right) = \left( {3{x^2} + 6x} \right){e^{{x^3} + 3{x^2}}}.f'\left( {{e^{{x^3} + 3{x^2}}} - m} \right)\)

\(\begin{array}{l} g'\left( x \right) = 0 \Leftrightarrow \left( {3{x^2} + 6x} \right){e^{{x^3} + 3{x^2}}}.f'\left( {{e^{{x^3} + 3{x^2}}} - m} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\;\;\;\;\\ x = - 2\\ {e^{{x^3} + 3{x^2}}} - m = - 3\\ {e^{{x^3} + 3{x^2}}} - m = 3\\ {e^{{x^3} + 3{x^2}}} - m = 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 2\\ {e^{{x^3} + 3{x^2}}} = m - 3,\;\left( 1 \right)\\ {e^{{x^3} + 3{x^2}}} = m + 3,\;\left( 2 \right)\\ {e^{{x^3} + 3{x^2}}} = m + 5,\;\left( 3 \right) \end{array} \right.\;\; \end{array}\)

Hàm số g(x) có 7 điểm cực trị khi và chỉ khi tổng số nghiệm đơn và bội lẻ, khác 0 và -2 của các phương trình (1), (2), (3) là 5.

Xét hàm số \(h\left( x \right) = {e^{{x^3} + 3{x^2}}}\) có \(h'\left( x \right) = \left( {3{x^2} + 6x} \right){e^{{x^3} + 3{x^2}}}\). Ta có \(h'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 0}\\ {x = - 2} \end{array}} \right.\).

Bảng biến thiên:

Khi đó có 3 trường hợp sau:

Trường hợp 1:

Khi đó: \(\left\{ {\begin{array}{*{20}{c}} {m + 3 \ge {e^4}\;\;\;\;\;\;\;\;}\\ {1 < m - 3 < {e^4}} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {m \ge {e^4} - 3 \approx 51,6\;\;\;\;\;\;\;\;}\\ {4 < m < {e^4} + 3 \approx 57,6} \end{array}} \right.\)

Do m nguyên nên \(m \in \left\{ {52;\,53;\,54;\,55;\,56;\,57} \right\}\).

Trường hợp 2:

Khi đó: \(\left\{ \begin{array}{l} m + 5 \ge {e^4}\\ 1 < m + 3 < {e^4}\\ 0 < m - 3 \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > {e^4} - 5 \approx 49,6\\ - 2 < m < {e^4} - 3\\ 3 < m \le 4 \end{array} \right. \Leftrightarrow m \in \emptyset \).

Trường hợp 3:

Khi đó: \(\left\{ {\begin{array}{*{20}{c}} {1 < m + 5 < {e^4}}\\ {m + 3 \le 1\;\;\;\;\;\;\;\;\;\;}\\ {m - 3 > 0\;\;\;\;\;\;\;\;\;} \end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4 < m < {e^4} - 5 \approx 49,6\\ m \le - 2\\ m > 3 \end{array} \right. \Leftrightarrow m \in \emptyset \).

Vậy có 6 giá trị nguyên của tham số m thỏa yêu cầu bài toán.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABC, đáy là tam giác ABC có \(AB = a;\,AC = a\sqrt 2 \) và \(\widehat {CAB} = 135^\circ \), tam giác SAB vuông tại B và tam giác SAC vuông tại A. Biết góc giữa hai mặt phẳng (SAC) và (SAB) bằng 30o. Tính thể tích khối chóp S.ABC

Xem lời giải » 2 năm trước 49
Câu 2: Trắc nghiệm

Trong không gian Oxyz, cho các vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1; - 1;0} \right)\). Tích vô hướng \(\left( {\overrightarrow a - \overrightarrow b } \right).\overrightarrow b \) bằng

Xem lời giải » 2 năm trước 46
Câu 3: Trắc nghiệm

Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\left\{ \begin{array}{l} x = 1 + 2t\\ y = 3 - t\\ z = 3t \end{array} \right.\)?

Xem lời giải » 2 năm trước 45
Câu 4: Trắc nghiệm

Họ nguyên hàm của hàm số \(y = {e^x}\left( {1 - \frac{{{e^{ - x}}}}{{{{\cos }^2}x}}} \right)\) là

Xem lời giải » 2 năm trước 44
Câu 5: Trắc nghiệm

Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \sin x - 6{x^2}\) là

Xem lời giải » 2 năm trước 44
Câu 6: Trắc nghiệm

Cho hàm số y = f(x) và f(x) > 0, với mọi x thuộc R. Biết hàm số y = f'(x) có bảng biến thiên như hình vẽ và \(f\left( {\frac{1}{2}} \right) = \frac{{137}}{{16}}\). Có bao nhiêu giá trị nguyên của \(m \in \left[ { - 2020\,;\,\,2020} \right]\) để hàm số \(g\left( x \right) = {e^{ - {x^2} + 4mx - 5}}.f\left( x \right)\) đồng biến trên \(\left( { - 1;\frac{1}{2}} \right)\).

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Tìm tập xác định của hàm số \(y = {e^{\log \left( { - {x^2} + 3x} \right)}}\)

Xem lời giải » 2 năm trước 42
Câu 8: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng đi qua điểm M(1;2;3) và song song với mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\) có phương trình là

Xem lời giải » 2 năm trước 42
Câu 9: Trắc nghiệm

Diện tích xung quanh của hình trụ có độ dài đường sinh l và bán kính đáy r bằng

Xem lời giải » 2 năm trước 40
Câu 10: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau:

Khẳng định nào sau đây đúng

Xem lời giải » 2 năm trước 40
Câu 11: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a,AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Gọi M điểm trên AB sao cho AM = 2a, tính khoảng cách giữa MD và SC.

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \((\alpha)\): 2x + 3z - 1 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của \((\alpha)\)

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Gọi k và l lần lượt là số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {2 - x} }}{{\left( {x - 1} \right)\sqrt x }}\). Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Tổng tất cả giá trị nguyên của tham số m để phương trình \(f\left( {\sqrt {2f\left( {\cos x} \right)} } \right) = m\) có nghiệm \(x \in \left[ {\frac{\pi }{2};\pi } \right).\)

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho các số thực a, b, c thuộc khoảng \(\left( {1; + \infty } \right)\) và thỏa mãn \(\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\frac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\). Giá trị của biểu thức \({\log _a}b + {\log _b}{c^2}\) bằng

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »