Cho hàm số \(y=f(x)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Đặt \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m\), với m là tham số thực. Điều kiện cần và đủ để bất phương trình \(g\left( x \right) \ge 0\) nghiệm đúng với \(\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) là
A. \(m \le 3f\left( {\sqrt 3 } \right)\)
B. \(m \le 3f\left( 0 \right)\)
C. \(m \ge 3f\left( 1 \right)\)
D. \(m \ge 3f\left( { - \sqrt 3 } \right)\)
Lời giải của giáo viên
Ta có: \(g\left( x \right) = 3f\left( x \right) - {x^3} + 3x - m \ge 0 \Leftrightarrow 3f\left( x \right) - {x^3} + 3x \ge m\)
Điều kiện bài toán trở thành tìm m để \(3f\left( x \right) - {x^3} + 3x \ge m,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Xét hàm \(h\left( x \right) = 3f\left( x \right) - {x^3} + 3x\) trên đoạn \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\) ta có:
\(h'\left( x \right) = 3f'\left( x \right) - 3{x^2} + 3 = 3\left( {f'\left( x \right) - {x^2} + 1} \right) = 0 \Leftrightarrow f'\left( x \right) = {x^2} - 1\)
Dựng đồ thị hàm số \(y = {x^2} - 1\) cùng một hệ trục tọa độ với đồ thị hàm số \(y = f'\left( x \right)\) bài cho ta được:
Xét trên đoạn \(\left( { - \sqrt 3 ;\sqrt 3 } \right)\) thì \(f'\left( x \right) \ge {x^2} - 1,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Do đó \(f'\left( x \right) - {x^2} + 1 \ge 0,\forall x \in \left[ { - \sqrt 3 ;\sqrt 3 } \right]\) hay hàm số \(y=h(x)\) đồng biến trên \(\left[ { - \sqrt 3 ;\sqrt 3 } \right]\).
Suy ra \(h\left( { - \sqrt 3 } \right) \le h\left( x \right) \le h\left( {\sqrt 3 } \right)\) hay \(3f\left( { - \sqrt 3 } \right) \le h\left( x \right) \le 3f\left( {\sqrt 3 } \right)\).
Điều kiện bài toán thỏa \( \Leftrightarrow m \le \mathop {\min }\limits_{\left[ { - \sqrt 3 ;\sqrt 3 } \right]} h\left( x \right) = h\left( { - \sqrt 3 } \right) = 3f\left( { - \sqrt 3 } \right)\).
Vậy \(m \le 3f\left( { - \sqrt 3 } \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng \(\left( Q \right):x + y + 3z = 0,\left( R \right):2x - y + z = 0\) là:
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + 2y - 2z - 6 = 0\) và \(\left( Q \right):x + 2y - 2z + 3 = 0\). Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng
Xét hai số thực a, b dương khác 1. Mệnh đề nào sau đây đúng?
Đồ thị hàm số \(y = \frac{{x + 1}}{{4x - 1}}\) có đường tiệm cận ngang là đường thẳng nào sau đây?
Trong không gian với hệ tọa độ Oxyz, cho \(\overrightarrow a = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là
Trong không gian Oxyz, cho điểm \(A\left( { - 4;0;1} \right)\) và mặt phẳng \(\left( P \right):x - 2y - z + 4 = 0\). Mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P) có phương trình là
Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào?
Biết bất phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\) có tập nghiệm là đoạn [a;b]. Giá trị của \(a+b\) bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 4\) và hai điểm A(-1;2;-3); B(5;2;3). Gọi M là điểm thay đổi trên mặt cầu (S). Tính giá trị lớn nhất của biểu thức \(2M{A^2} + M{B^2}\).
Tìm nghiệm của phương trình \({\log _2}\left( {x - 5} \right) = 4\).
Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là
Cho đồ thị \(y=f(x)\) như hình vẽ sau đây. Biết rằng \(\int\limits_{ - 2}^1 {f\left( x \right)dx} = a\) và \(\int\limits_1^2 {f\left( x \right)dx} = b\). Tính diện tích S của phần hình phẳng được tô đậm.