Lời giải của giáo viên
Ta có \(y'=-f'\left( 2-x \right).\) Xét \(y' = 0 \Leftrightarrow - f'\left( {2 - x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} 2 - x = - 1\\ 2 - x = 1\\ 2 - x = 2\\ 2 - x = 3 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = 1\\ x = 0\\ x = - 1 \end{array} \right.\).
Bảng xét dấu của y'
Từ bảng xét dấu, ta sy ra hàm số \(y=f\left( 2-x \right)\) có tất cả 3 điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình lăng trụ \(ABC.A'B'C'\) có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 6. Gọi \(M,N,P\) lần lượt là tâm của các mặt bên \(ABB'A',ACC'A'\) và \(BCC'B'.\) Thể tích của khối đa diện lồi có các đỉnh là các điểm \(A,B,C,M,N,P\) bằng:
Cho tam giác \(ABC\) có \(BC=a,CA=b,AB=c.\) Nếu \(a,b,c\) theo thứ tự lập thành một cấp số nhân thì
Cho lăng trụ đều \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a.\) Gọi \(\alpha \) là góc giữa mặt phẳng \(\left( A'BC \right)\) và mặt phẳng \(\left( ABC \right).\) Tính \(\tan \alpha .\)
Tổng các giá trị nguyên âm của \(m\) để hàm số \(y={{x}^{3}}+mx-\frac{1}{5{{x}^{5}}}\) đồng biến trên khoảng \(\left( 0;+\infty \right)\)?
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right)=\cos x\sqrt{\sin x+1}.\)
Một cấp số cộng có \({{u}_{2}}=5\) và \({{u}_{3}}=9.\) Khẳng định nào sau đây đúng?
Trong không gian với hệ trục tọa độ \(Oxyz\), để hai vecto \(\overrightarrow{a}=(m;2;3)\) và \(\overrightarrow{b}=(1;n;2)\) cùng phương thì \(2m+3n\) bằng
Cho tập Y gồm 5 điểm phân biệt trên mặt phẳng. Số véc-tơ khác \(\overrightarrow{0}\) có điểm đầu, điểm cuối thuộc tập Y là
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SD=\frac{a\sqrt{17}}{2},\) hình chiếu vuông góc \(H\) của \(S\) trên \(\left( ABCD \right)\) là trung điểm của đoạn \(AB. \) Gọi \(K\) là trung điểm của đoạn \(AD. \) Khoảng cách giữa hai đường \(HK\) và \(SD\) theo \(a\) là:
Cắt một khối cầu bởi một mặt phẳng đi qua tâm thì được một hình tròn có diện tích bằng \(16\pi .\) Tính diện tích của mặt cầu giới hạn nên khối cầu đó?
Cho \(x,y\) là các số thực thỏa mãn \(x\ne 0\) và \({{\left( {{3}^{{{x}^{2}}}} \right)}^{3y}}={{27}^{x}}.\) Khẳng định nào sau đây là khẳng định đúng?
Hàm số \(y={{\left( 4-{{x}^{2}} \right)}^{\frac{3}{5}}}\) có tập xác định
Tìm số hạng không chứa \(x\) trong khai triển nhị thức Newton \({{\left( x-\frac{2}{{{x}^{2}}} \right)}^{21}}\), \(\left( x\ne 0,n\in \mathbb{N}* \right).\)