Cho hàm số \(f\left( x \right) = \frac{{2x + 1}}{x}\). Trong các khẳng định sau, khẳng định nào đúng?
A. \(\int {f(x)dx} = \ln x + 2x + C\)
B. \(\int {f(x)dx} = x - \ln \left| x \right| + C\)
C. \(\int {f(x)dx} = \ln \left| x \right| + C\)
D. \(\int {f(x)dx} = \ln \left| x \right| + 2x + C\)
Lời giải của giáo viên
\(\int {\frac{{2x + 1}}{x}dx} = \int {2dx + \int {\frac{1}{x}dx} = 2x + \ln \left| x \right|} + C\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau đây?
Cho hàm số \(f\left( x \right)=\sin x\cos x\). Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có \(A\left( 2\,;2;\,0 \right), B\left( 1;0;2 \right), C\left( 0;4;4 \right)\). Viết phương trình mặt cầu có tâm là A và đi qua trọng tâm G của tam giác ABC.
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3{x^2};x \ge 1\\ 5 - x\,;x < 1 \end{array} \right.\). Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x + 3\int\limits_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} } \).
Gọi T là tập hợp tất cả các số phức z thõa mãn \(\left| {{z}_{1}} \right|=2\) và \(\left| {{z}_{2}} \right|=3,\left| 2{{z}_{1}}-{{z}_{2}} \right|=\sqrt{17}\). Gọi M,m lần lượt là các giá trị lớn nhất, giá trị nhỏ nhất của \(T=\left| 3{{z}_{1}}+2{{z}_{2}}-10-12i \right|\). Khi đó M.n bằng
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Tính diện tích xung quanh của một hình trụ có chiều cao 20m, chu vi đáy bằng 5m.
Cho hàm số \(y={{x}^{4}}-{{x}^{3}}+3.\) Khẳng định nào sau đây là đúng?
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( -2000;2000 \right)\) để \(4{{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+3\) với mọi \(a,b\in \left( 1;+\infty \right)\)
Cho tứ diện OABC có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc và \(OA=OB=2a,\,\,OC=a\sqrt{2}\). Khoảng cách từ O đến mặt phẳng \(\left( ABC \right)\) bằng
Hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y={f}'\left( x \right)\) như hình vẽ.
Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021\). Trong các mệnh đề dưới đây:
(I) \(g\left( 0 \right)<g\left( 1 \right)\).
(II) \(\underset{x\in \left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).
(III) Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( -3;-1 \right)\).
(IV) \(\underset{x\in \left[ -3;1 \right]}{\mathop{\max }}\,g\left( x \right)=\max \left\{ g\left( -3 \right);g\left( 1 \right) \right\}\).
Số mệnh đề đúng là
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Rút gọn \(P = {a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}},a > 0.\)
Cho khối chóp có diện tích đáy \(B=10\,\left( {{\text{m}}^{2}} \right)\) và chiều cao \(h=6\,\left( \text{m} \right)\). Thể tích của khối chóp đã cho bằng
Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) cạnh a. Gọi O là tâm của hình vuông ABCD. Côsin của góc giữa hai mặt phẳng \(\left( O{A}'{B}' \right)\) và \(\left( O{C}'{D}' \right)\) bằng