Cho hàm số \(f\left( x \right) = \frac{{2x - m}}{{x + 2}}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m sao cho \(\mathop {\max }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {\min }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 4\). Số phần tử của S là
A. 2
B. 1
C. 4
D. 3
Lời giải của giáo viên
TXĐ: D = R \ {-2}
• Xét m = -4 thì f(x) = 2 thỏa mãn.
• Xét m khác 4. Ta có \(y' = \frac{{4 + m}}{{{{\left( {x + 2} \right)}^2}}}\) nên hàm số đơn điệu trên mỗi khoảng của tập xác định. Do đó hàm số đơn điệu trên [0;2].
Ta có \(f\left( 0 \right) = - \frac{m}{2};\,f\left( 2 \right) = \frac{{4 - m}}{4}\), giao điểm của đồ thị f(x) với trục hoành là \(\left( {\frac{m}{2};0} \right)\).
TH1: \(0 \le \frac{m}{2} \le 2 \Leftrightarrow 0 \le m \le 4\). Khi đó \(\mathop {\min }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 0\) và \(\mathop {\max }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = \frac{{4 - m}}{4}\) hoặc \(\mathop {\max }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = \frac{m}{2}\).
Theo giả thiết ta phải có \(\left[ {\begin{array}{*{20}{c}} {\frac{{4 - m}}{4} = 4}\\ {\frac{m}{2} = 4} \end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {m = - 12}\\ {m = 8} \end{array}} \right.\) (loại).
TH2: \(\frac{m}{2} \notin \left[ {0;2} \right] \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {m < 0}\\ {m > 4} \end{array}} \right.\). Khi đó: \(\mathop {\max }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| + \mathop {\min }\limits_{\left[ {0;2} \right]} \left| {f\left( x \right)} \right| = 4 \Leftrightarrow \left| { - \frac{m}{2}} \right| + \,\,\left| {\frac{{4 - m}}{4}} \right| = 4\)
\(\, \Leftrightarrow 2\left| m \right| + \left| {4 - m} \right| = 16 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {m = - 4}\\ {m = \frac{{20}}{3}} \end{array}} \right.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\)
Vậy có 3 giá trị của thỏa mãn bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA' = a,AD = 2a. Gọi góc giữa đường chéo A'C và mặt phẳng đáy (ABCD) là \(\alpha\). Khi đó \(\tan \alpha\) bằng
Cho số phức z thỏa mãn điều kiện \(\left( {1 + i} \right)\bar z - 1 - 3i = 0\). Tìm phần ảo của số phức \(w = 1 - zi + \bar z\).
Tính diện tích hình phẳng được giới hạn bởi hai đồ thị \(y = - {x^2} + 2{\rm{x}} + 1\); \(y = 2{{\rm{x}}^2} - 4{\rm{x}} + 1\).
Xếp ngẫu nhiên 4 bạn nam và 5 bạn nữ ngồi vào 9 cái ghế kê theo một hàng ngang. Xác suất để có được 5 bạn nữ ngồi cạnh nhau là:
Cho hàm số y = f(x) là hàm số chẵn, liên tục trên R và số thực a dương thỏa \(\int\limits_0^a {f\left( x \right){\rm{d}}x = 3} \). Tính \(I = \int\limits_{ - a}^a {\left( {f\left( x \right) - x} \right){\rm{d}}x} \).
Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):2x - y + z - 3 = 0\) cắt nhau theo giao tuyến là đường thẳng \(\left( \Delta \right)\). Một véc tơ chỉ phương của \(\left( \Delta \right)\) có tọa độ là
Cho số phức z = 3 + i. Tính \(\left| {\overline z } \right|\)
Cho cấp số cộng (un) với u1 = 2 và công sai d = 1. Khi đó u3 bằng
Cho số thực a > 1. Gọi A, B, C lần lượt là các điểm thuộc đồ thị các hàm số \(y = {a^x};\,y = {\left( {\frac{1}{a}} \right)^x};y = {\log _{\frac{1}{a}}}x.\) Biết tam giác ABC vuông cân đỉnh A, AB = 4 và đường thẳng AC song song với trục Oy. Khi đó giá trị a bằng:
Cho hình nón có độ dài đường sinh bằng 2a và chu vi đáy bằng \(2\pi a\). Tính diện tích xung quanh S của hình nón.
Cho lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại B, AB = BC = a, \(AA' = a\sqrt 2 \) , M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM và B'C.
Trong không gian với hệ tọa độ Oxyz, cho điểm K(2;4;6), gọi K' là hình chiếu vuông góc của K lên Oz, khi đó trung điểm của OK' có tọa độ là:
Cho x, y, z là các số thực không âm thỏa \({2^x} + {2^y} + {2^z} = 4\). Giá trị nhỏ nhất của biểu thức P = x +y + z?
Thể tích khối lăng trụ có chiều cao h và diện tích đáy bằng B là.